"Since \\ we \\ have \\\\\nx^2+y^2+z^2\\leq r^2, \\\\\nwe \\ obtain\\ \\\\\n\\rho=0\\rightarrow r ,\\\\\n\\phi=0\\rightarrow \\pi\\ and \\\\\n\\theta=0\\rightarrow 2\\pi. \\\\\nSo, we \\, get\\\\\n\\iiint\\limits_D c\\ dV\\ =\\int\\limits_0^{2\\pi}\\int\\limits_0^{\\pi}\\int\\limits_0^{r} c\\ \\rho^2\\ sin(\\phi ) \\ d\\rho \\ d\\phi\\ d\\theta\\\\ \\\\\n\\\\\n\\qquad \\qquad\\ = -c\\ \\frac{\\rho^3}{3}|_0^{r}\\ cos(\\phi )\\large|_0^{\\pi}\\theta|_0^{2\\pi}\\\\\n\\qquad \\quad\\ \\ =-c\\ \\frac{r^3}{3}(\\ cos(\\pi )-cos(0)(2\\pi-0)\\\\\n\\qquad \\quad\\ \\ =-c\\ \\frac{r^3}{3}(-2)(2\\pi)\\\\\n\\qquad \\quad\\ \\ = \\frac{4}{3} \\pi c r^3\\\\\n\\text{So, the correct answer is} \\ \\ \\ b"
Comments
Leave a comment