Solution:
General Equation of the Ellipse
x2/a2 + y2/b2 =1.
Let the normal at the extremity P of the latus rectum passes through the extremity D of the minor axis.
The coordinates of P will be (ae,b2 /a ) and the coordinates of D will be (0, −b)
So the equation of the normal at P becomes
( a2x / ae ) - (b2y*a/ b2 ) = a2 - b2
(ax/e ) - ay = a2 - b2 ----------------- (2)
The normal at P passes through D(0, −b) so the equation (2) becomes,
(a*0 /e) - a* (-b) = a2 -b2
0 + ab = a2 - b2
Squaring both the sides
(ab)2 = (a2 - b2)2 ------------------- (3)
We know b2 = a2 (1−e2)
Put the value of b2 in equation (3)
a2 [ a2(1-e2) ] = [a2 - [ a2(1-e2) ] ]2
a4(1-e2) = (a2 - a2 + a2e2)2
a4(1-e2) = a4e4
1-e2 = e4
⟹ 1-e2 - e4 = 0
⟹ e4 + e2 -1 = 0
Comments
Leave a comment