1)x−y+2z=0↔z=2(y−x)2)x2+y2−4z2+6yz=0After placing z out 1) to 2) we get
3)x2+y2−(y−x)2+3y(y−x)=0↔y(3y−x)=0
Let's find intersection line equations out of 3)
a)x=t,y=31t,z=−31tb)x=t,y=0,z=−21t then we find points on this lines and build collinear vectors of them
a)A(3,1,−1),B(6,2,−2),AB=(3,1,−1)
b)C(2,0,−1),D(4,0,−2),CD=(2,0,−1) Then we use the scalar product formula to find the angle between vectors lying on intersection lines
AB⋅CD=∣AB∣∣CD∣cos(∠(AB,CD))
7=511cos(∠(AB,CD))
cos∠(AB,CD)=5549⟹∠(AB,CD)≈0.336.
arctan∠(AB,CD)=2π−arccos(1+∠(AB,CD)2∠(AB,CD))≈
≈1.57−1.24=0.33=0.746≈arctan(6/7)
Comments