Question #91557
Show that the angle between the two lines in which the plane x-y+2z=0 intersects the cone x²+y²-4z²+6yz=0 is tan⁻¹(√(6/7))
1
Expert's answer
2019-07-19T09:48:08-0400
1)xy+2z=0z=(yx)21) x - y + 2z = 0 \leftrightarrow z = \frac{(y-x)}{2}2)x2+y24z2+6yz=02)x^2 +y^2 -4z^2 +6yz = 0

After placing z out 1) to 2) we get

3)x2+y2(yx)2+3y(yx)=0y(3yx)=03)x^2 + y^2 - (y-x)^2 + 3y(y-x) = 0 \leftrightarrow y(3y-x)=0


Let's find intersection line equations out of 3)

a)x=t,y=13t,z=13ta) x = t, y = \frac{1}{3}t, z = -\frac{1}{3}tb)x=t,y=0,z=12tb) x = t, y = 0, z = - \frac{1}{2}t

then we find points on this lines and build collinear vectors of them

a)A(3,1,1),B(6,2,2),AB=(3,1,1)a)A(3, 1, -1), B(6, 2,-2), \overline{AB} = (3, 1, -1)

b)C(2,0,1),D(4,0,2),CD=(2,0,1)b)C(2, 0, -1), D(4, 0,-2), \overline{CD} = (2, 0, -1)

Then we use the scalar product formula to find the angle between vectors lying on intersection lines

ABCD=ABCDcos((AB,CD))\overline{AB}\cdot \overline{CD} = |\overline{AB}| |\overline{CD}|cos(\angle(\overline{AB} , \overline{CD}) )

7=511cos((AB,CD))7 = \sqrt{5}\sqrt{11}cos(\angle(\overline{AB} , \overline{CD}) )

cos(AB,CD)=4955    (AB,CD)0.336.cos{\angle(\overline{AB} , \overline{ CD}) } = \sqrt{\frac{49}{55}}\implies\angle(\overline{AB} , \overline{CD}) \approx 0.336.

arctan(AB,CD)=π2arccos((AB,CD)1+(AB,CD)2)\arctan{\angle(\overline{AB} , \overline{CD}) } = \frac{\pi}{2} - \arccos(\tfrac{\angle(\overline{AB} , \overline{CD}) }{\sqrt{1 +\angle(\overline{AB} , \overline{CD})^2 }}) \approx

1.571.24=0.330.746arctan(6/7)\approx 1.57 - 1.24 = 0.33 \ne 0.746 \approx \arctan(\sqrt{6/7})




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS