After placing z out 1) to 2) we get
"3)x^2 + y^2 - (y-x)^2 + 3y(y-x) = 0 \\leftrightarrow y(3y-x)=0"Let's find intersection line equations out of 3)
"a) x = t, y = \\frac{1}{3}t, z = -\\frac{1}{3}t""b) x = t, y = 0, z = - \\frac{1}{2}t"then we find points on this lines and build collinear vectors of them
"a)A(3, 1, -1), B(6, 2,-2), \\overline{AB} = (3, 1, -1)""b)C(2, 0, -1), D(4, 0,-2), \\overline{CD} = (2, 0, -1)"
Then we use the scalar product formula to find the angle between vectors lying on intersection lines
"\\overline{AB}\\cdot \\overline{CD} = |\\overline{AB}| |\\overline{CD}|cos(\\angle(\\overline{AB} , \\overline{CD}) )""7 = \\sqrt{5}\\sqrt{11}cos(\\angle(\\overline{AB} , \\overline{CD}) )"
"cos{\\angle(\\overline{AB} , \\overline{ CD}) } = \\sqrt{\\frac{49}{55}}\\implies\\angle(\\overline{AB} , \\overline{CD}) \\approx 0.336."
"\\arctan{\\angle(\\overline{AB} , \\overline{CD}) } = \\frac{\\pi}{2} - \\arccos(\\tfrac{\\angle(\\overline{AB} , \\overline{CD}) }{\\sqrt{1 +\\angle(\\overline{AB} , \\overline{CD})^2 }}) \\approx"
"\\approx 1.57 - 1.24 = 0.33 \\ne 0.746 \\approx \\arctan(\\sqrt{6\/7})"
Comments
Leave a comment