1 ) x − y + 2 z = 0 ↔ z = ( y − x ) 2 1) x - y + 2z = 0 \leftrightarrow z = \frac{(y-x)}{2} 1 ) x − y + 2 z = 0 ↔ z = 2 ( y − x ) 2 ) x 2 + y 2 − 4 z 2 + 6 y z = 0 2)x^2 +y^2 -4z^2 +6yz = 0 2 ) x 2 + y 2 − 4 z 2 + 6 yz = 0 After placing z out 1) to 2) we get
3 ) x 2 + y 2 − ( y − x ) 2 + 3 y ( y − x ) = 0 ↔ y ( 3 y − x ) = 0 3)x^2 + y^2 - (y-x)^2 + 3y(y-x) = 0 \leftrightarrow y(3y-x)=0 3 ) x 2 + y 2 − ( y − x ) 2 + 3 y ( y − x ) = 0 ↔ y ( 3 y − x ) = 0
Let's find intersection line equations out of 3)
a ) x = t , y = 1 3 t , z = − 1 3 t a) x = t, y = \frac{1}{3}t, z = -\frac{1}{3}t a ) x = t , y = 3 1 t , z = − 3 1 t b ) x = t , y = 0 , z = − 1 2 t b) x = t, y = 0, z = - \frac{1}{2}t b ) x = t , y = 0 , z = − 2 1 t then we find points on this lines and build collinear vectors of them
a ) A ( 3 , 1 , − 1 ) , B ( 6 , 2 , − 2 ) , A B ‾ = ( 3 , 1 , − 1 ) a)A(3, 1, -1), B(6, 2,-2), \overline{AB} = (3, 1, -1) a ) A ( 3 , 1 , − 1 ) , B ( 6 , 2 , − 2 ) , A B = ( 3 , 1 , − 1 )
b ) C ( 2 , 0 , − 1 ) , D ( 4 , 0 , − 2 ) , C D ‾ = ( 2 , 0 , − 1 ) b)C(2, 0, -1), D(4, 0,-2), \overline{CD} = (2, 0, -1) b ) C ( 2 , 0 , − 1 ) , D ( 4 , 0 , − 2 ) , C D = ( 2 , 0 , − 1 ) Then we use the scalar product formula to find the angle between vectors lying on intersection lines
A B ‾ ⋅ C D ‾ = ∣ A B ‾ ∣ ∣ C D ‾ ∣ c o s ( ∠ ( A B ‾ , C D ‾ ) ) \overline{AB}\cdot \overline{CD} = |\overline{AB}| |\overline{CD}|cos(\angle(\overline{AB} , \overline{CD}) ) A B ⋅ C D = ∣ A B ∣∣ C D ∣ cos ( ∠ ( A B , C D ))
7 = 5 11 c o s ( ∠ ( A B ‾ , C D ‾ ) ) 7 = \sqrt{5}\sqrt{11}cos(\angle(\overline{AB} , \overline{CD}) ) 7 = 5 11 cos ( ∠ ( A B , C D ))
c o s ∠ ( A B ‾ , C D ‾ ) = 49 55 ⟹ ∠ ( A B ‾ , C D ‾ ) ≈ 0.336. cos{\angle(\overline{AB} , \overline{ CD}) } = \sqrt{\frac{49}{55}}\implies\angle(\overline{AB} , \overline{CD}) \approx 0.336. cos ∠ ( A B , C D ) = 55 49 ⟹ ∠ ( A B , C D ) ≈ 0.336.
arctan ∠ ( A B ‾ , C D ‾ ) = π 2 − arccos ( ∠ ( A B ‾ , C D ‾ ) 1 + ∠ ( A B ‾ , C D ‾ ) 2 ) ≈ \arctan{\angle(\overline{AB} , \overline{CD}) } = \frac{\pi}{2} - \arccos(\tfrac{\angle(\overline{AB} , \overline{CD}) }{\sqrt{1 +\angle(\overline{AB} , \overline{CD})^2 }}) \approx arctan ∠ ( A B , C D ) = 2 π − arccos ( 1 + ∠ ( A B , C D ) 2 ∠ ( A B , C D ) ) ≈
≈ 1.57 − 1.24 = 0.33 ≠ 0.746 ≈ arctan ( 6 / 7 ) \approx 1.57 - 1.24 = 0.33 \ne 0.746 \approx \arctan(\sqrt{6/7}) ≈ 1.57 − 1.24 = 0.33 = 0.746 ≈ arctan ( 6/7 )
Comments