Question #327005

Given that A = 2i + 3j - k, B = i - j +2k and C = 3i + 4j + k


a)find the unit vector along the direction of nA, for n<0


b) find the length of the projection of vector A on vector C


c)find the length of projection of vector C and vector A


d) find the sine of the angle between vector A and vector C

1
Expert's answer
2022-04-12T13:52:22-0400

Given that A=2i+3jk\overrightarrow{A} = 2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k} , B=ij+2k\overrightarrow{B} = \overrightarrow{i} -\overrightarrow{j} +2 \overrightarrow{k} and C=3i+4j+k\overrightarrow{C} = 3\overrightarrow{i} + 4\overrightarrow{j}+\overrightarrow{k} .

a)find the unit vector along the direction of nA, for n<0

e=AA=2i+3jk22+32+(1)2=\overrightarrow{e}=-\frac{\overrightarrow{A}}{|\overrightarrow{A}|}=-\frac{2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}}{\sqrt{2^2+3^2+(-1)^2}}=214i314j+114k-\frac{2}{\sqrt{14}}\overrightarrow{i} -\frac{3}{\sqrt{14}}\overrightarrow{j} +\frac{1}{\sqrt{14}} \overrightarrow{k}

b) find the length of the projection of vector A on vector C

projCA=ACC=proj_{\overrightarrow{C}}\overrightarrow{A}=\frac{\overrightarrow{A}\cdot\overrightarrow{C}}{|\overrightarrow{C}|}=23+34+(1)132+42+12=1726\frac{2\cdot3+3\cdot4+(-1)\cdot1}{\sqrt{3^2+4^2+1^2}}=\frac{17}{\sqrt{26}}

c)find the length of projection of vector C and vector A

projAC=ACA=proj_{\overrightarrow{A}}\overrightarrow{C}=\frac{\overrightarrow{A}\cdot\overrightarrow{C}}{|\overrightarrow{A}|}=23+34+(1)122+32+(1)2=1714\frac{2\cdot3+3\cdot4+(-1)\cdot1}{\sqrt{2^2+3^2+(-1)^2}}=\frac{17}{\sqrt{14}}

d) find the sine of the angle between vector A and vector C

A×C=ACsinα|\overrightarrow{A}\times\overrightarrow{C}|=|\overrightarrow{A}|\cdot|\overrightarrow{C}|\cdot\sin{\alpha} , where α\alpha is the angle between A\overrightarrow{A} and C\overrightarrow{C}

sinα=A×CAC\sin{\alpha}=\frac{|\overrightarrow{A}\times\overrightarrow{C}|}{|\overrightarrow{A}|\cdot|\overrightarrow{C}|}

A×C=ijk231341=\overrightarrow{A}\times\overrightarrow{C}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 3 & -1 \\ 3 & 4 & 1 \end{vmatrix}=i(314(1))j(213(1))+\overrightarrow{i}(3\cdot1-4\cdot(-1))-\overrightarrow{j}(2\cdot1-3\cdot(-1))+k(2433)=\overrightarrow{k}(2\cdot4-3\cdot3)=7i5jk7\overrightarrow{i}-5\overrightarrow{j}-\overrightarrow{k}

sinα=72+(5)2+(1)222+32+(1)232+42+12=751426=75364=\sin{\alpha}=\frac{\sqrt{7^2+(-5)^2+(-1)^2}}{\sqrt{2^2+3^2+(-1)^2}\cdot\sqrt{3^2+4^2+1^2}}=\frac{\sqrt{75}}{\sqrt{14}\cdot\sqrt{26}}=\frac{\sqrt{75}}{\sqrt{364}}=52391\frac 52\sqrt{\frac{3}{91}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS