n ^ = A → × B → ∣ A → × B → ∣ \hat{n} =\cfrac{\overrightarrow{A} \times\overrightarrow{B}} {|\overrightarrow{A} \times\overrightarrow{B}|} n ^ = ∣ A × B ∣ A × B
A → × B → = ∣ i ^ j ^ k ^ 2 1 1 − 1 2 1 ∣ = \overrightarrow{A} \times\overrightarrow{B}=\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}\\
2 & 1 & 1\\
- 1 & 2 & 1
\end{vmatrix}= A × B = ∣ ∣ i ^ 2 − 1 j ^ 1 2 k ^ 1 1 ∣ ∣ =
= i ^ ( 1 ⋅ 1 − 1 ⋅ 2 ) − j ^ ( 2 ⋅ 1 − 1 ⋅ ( − 1 ) ) + + k ^ ( 2 ⋅ 2 − 1 ⋅ ( − 1 ) ) = = − i ^ − 3 j ^ + 5 k ^ =\hat{i}(1\cdot1-1\cdot2) -\hat{j}(2\cdot1-1\cdot(-1))+\\
+\hat{k}(2\cdot2-1\cdot(-1))=\\
=-\hat{i}-3\hat{j}+5\hat{k} = i ^ ( 1 ⋅ 1 − 1 ⋅ 2 ) − j ^ ( 2 ⋅ 1 − 1 ⋅ ( − 1 )) + + k ^ ( 2 ⋅ 2 − 1 ⋅ ( − 1 )) = = − i ^ − 3 j ^ + 5 k ^
∣ A → × B → ∣ = ( − 1 ) 2 + ( − 3 ) 2 + 5 2 = 35 |\overrightarrow{A} \times\overrightarrow{B}|=\sqrt{(-1)^2+(-3)^2+5^2} =\sqrt{35} ∣ A × B ∣ = ( − 1 ) 2 + ( − 3 ) 2 + 5 2 = 35
n ^ = − i ^ 35 − 3 j ^ 35 + 5 k ^ 35 . \hat{n} =\cfrac{-\hat{i}} {\sqrt{35}} -\cfrac{3\hat{j}}{\sqrt{35}}+\cfrac{5\hat{k}}{\sqrt{35}}. n ^ = 35 − i ^ − 35 3 j ^ + 35 5 k ^ .
Comments