Find the unit vector that is perpendicular to vectors A=2i + j + k and B= -1 + 2j + k
"\\hat{n} =\\cfrac{\\overrightarrow{A} \\times\\overrightarrow{B}} {|\\overrightarrow{A} \\times\\overrightarrow{B}|}"
"\\overrightarrow{A} \\times\\overrightarrow{B}=\\begin{vmatrix}\n \\hat{i} & \\hat{j} & \\hat{k}\\\\\n 2 & 1 & 1\\\\\n - 1 & 2 & 1\n\\end{vmatrix}="
"=\\hat{i}(1\\cdot1-1\\cdot2) -\\hat{j}(2\\cdot1-1\\cdot(-1))+\\\\\n+\\hat{k}(2\\cdot2-1\\cdot(-1))=\\\\\n=-\\hat{i}-3\\hat{j}+5\\hat{k}"
"|\\overrightarrow{A} \\times\\overrightarrow{B}|=\\sqrt{(-1)^2+(-3)^2+5^2} =\\sqrt{35}"
"\\hat{n} =\\cfrac{-\\hat{i}} {\\sqrt{35}} -\\cfrac{3\\hat{j}}{\\sqrt{35}}+\\cfrac{5\\hat{k}}{\\sqrt{35}}."
Comments
Leave a comment