The equation of the plane through the points (0,1,8),(1,1,11) and (1,6,0) is:
z= Blank 1. Calculate the answer by read surrounding text.
+ Blank 2. Calculate the answer by read surrounding text.
x+ Blank 3. Calculate the answer by read surrounding text.
y.
A(0,1,8),B(1,1,11),C(1,6,0)∣x−0y−1z−81−01−111−81−06−10−8∣=0∣xy−1z−810315−8∣=0x⋅∣035−8∣−(y−1)⋅∣131−8∣++(z−8)⋅∣1015∣=0(0−15)x−(y−1)(−8−3)++(z−8)(5−0)=0−15x+11(y−1)+5(z−8)=0−15x+11y+5z−51=0A(0,1,8), B(1,1,11), C(1,6,0)\\ \begin{vmatrix} x-0 & y-1&z-8 \\ 1-0 & 1-1&11-8\\ 1-0&6-1&0-8 \end{vmatrix}=0\\ \begin{vmatrix} x & y-1&z-8 \\ 1 & 0&3\\ 1&5&-8 \end{vmatrix}=0\\ x\cdot \begin{vmatrix} 0 & 3 \\ 5 & -8 \end{vmatrix}-(y-1)\cdot \begin{vmatrix} 1 & 3 \\ 1 & -8 \end{vmatrix}+\\+(z-8)\cdot \begin{vmatrix} 1 & 0 \\ 1 & 5 \end{vmatrix}=0\\ (0-15)x-(y-1)(-8-3)+\\+(z-8)(5-0)=0\\ -15x+11(y-1)+5(z-8)=0\\ -15x+11y+5z-51=0A(0,1,8),B(1,1,11),C(1,6,0)∣∣x−01−01−0y−11−16−1z−811−80−8∣∣=0∣∣x11y−105z−83−8∣∣=0x⋅∣∣053−8∣∣−(y−1)⋅∣∣113−8∣∣++(z−8)⋅∣∣1105∣∣=0(0−15)x−(y−1)(−8−3)++(z−8)(5−0)=0−15x+11(y−1)+5(z−8)=0−15x+11y+5z−51=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments