Question #307580

Determine if the following lines are parallel, skew or intersecting.




⟨x,y,z⟩=⟨2,1,2⟩+⟨3,5,2⟩t and



⟨x,y,z⟩=⟨2,5,2 ⟩+⟨3,3,2⟩s



*If parallel (type the number 1).



*If intersecting (type the number 2).



*If skew (type the number 3).


1
Expert's answer
2022-03-14T20:07:38-0400

<x,y,z>=<2,1,2>+<3,5,2>t<x,y,z>=<2,5,2>+<3,3,2>s1.a1=(3,5,2)a2=(3,3,2)335322<x,y,z>=<2,1,2>+<3,5,2>t\\ <x,y,z>=<2,5,2>+<3,3,2>s\\ 1. \vec{a_1}=(3,5,2)\\ \vec{a_2}=(3,3,2)\\ \frac{3}{3}\neq\frac{5}{3}\neq\frac{2}{2}

lines are not parallel

2.

A(2,1,2),B(2,5,2)AB=(22,51,22)=(0,4,0)ABa1a2==040352332=052+423+033053342320=2424=0A(2,1,2), B(2,5,2)\\ \overrightarrow{AB}=(2-2,5-1,2-2)=(0,4,0)\\ \overrightarrow{AB}\cdot\vec{a_1}\cdot\vec{a_2}=\\ =\begin{vmatrix} 0 & 4&0 \\ 3 & 5&2\\ 3&3&2 \end{vmatrix}=0\cdot5\cdot2+4\cdot2\cdot3+0\cdot3\cdot3-\\ -0\cdot5\cdot3-3\cdot4\cdot2-3\cdot2\cdot0=24-24=0

lines are intersecting

*If intersecting (type the number 2).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS