Determine if the following lines are parallel, skew or intersecting.
⟨x,y,z⟩=⟨2,1,2⟩+⟨3,5,2⟩t and
⟨x,y,z⟩=⟨2,5,2 ⟩+⟨3,3,2⟩s
*If parallel (type the number 1).
*If intersecting (type the number 2).
*If skew (type the number 3).
"<x,y,z>=<2,1,2>+<3,5,2>t\\\\\n<x,y,z>=<2,5,2>+<3,3,2>s\\\\\n1. \\vec{a_1}=(3,5,2)\\\\\n \\vec{a_2}=(3,3,2)\\\\\n\\frac{3}{3}\\neq\\frac{5}{3}\\neq\\frac{2}{2}"
lines are not parallel
2.
"A(2,1,2), B(2,5,2)\\\\ \\overrightarrow{AB}=(2-2,5-1,2-2)=(0,4,0)\\\\\n\\overrightarrow{AB}\\cdot\\vec{a_1}\\cdot\\vec{a_2}=\\\\\n=\\begin{vmatrix}\n 0 & 4&0 \\\\\n 3 & 5&2\\\\\n3&3&2\n\\end{vmatrix}=0\\cdot5\\cdot2+4\\cdot2\\cdot3+0\\cdot3\\cdot3-\\\\\n-0\\cdot5\\cdot3-3\\cdot4\\cdot2-3\\cdot2\\cdot0=24-24=0"
lines are intersecting
*If intersecting (type the number 2).
Comments
Leave a comment