Determine if the following lines are parallel, skew or intersecting.
⟨x,y,z⟩=⟨2,1,2⟩+⟨3,5,2⟩t and
⟨x,y,z⟩=⟨2,5,2 ⟩+⟨3,3,2⟩s
*If parallel (type the number 1).
*If intersecting (type the number 2).
*If skew (type the number 3).
<x,y,z>=<2,1,2>+<3,5,2>t<x,y,z>=<2,5,2>+<3,3,2>s1.a1⃗=(3,5,2)a2⃗=(3,3,2)33≠53≠22<x,y,z>=<2,1,2>+<3,5,2>t\\ <x,y,z>=<2,5,2>+<3,3,2>s\\ 1. \vec{a_1}=(3,5,2)\\ \vec{a_2}=(3,3,2)\\ \frac{3}{3}\neq\frac{5}{3}\neq\frac{2}{2}<x,y,z>=<2,1,2>+<3,5,2>t<x,y,z>=<2,5,2>+<3,3,2>s1.a1=(3,5,2)a2=(3,3,2)33=35=22
lines are not parallel
2.
A(2,1,2),B(2,5,2)AB→=(2−2,5−1,2−2)=(0,4,0)AB→⋅a1⃗⋅a2⃗==∣040352332∣=0⋅5⋅2+4⋅2⋅3+0⋅3⋅3−−0⋅5⋅3−3⋅4⋅2−3⋅2⋅0=24−24=0A(2,1,2), B(2,5,2)\\ \overrightarrow{AB}=(2-2,5-1,2-2)=(0,4,0)\\ \overrightarrow{AB}\cdot\vec{a_1}\cdot\vec{a_2}=\\ =\begin{vmatrix} 0 & 4&0 \\ 3 & 5&2\\ 3&3&2 \end{vmatrix}=0\cdot5\cdot2+4\cdot2\cdot3+0\cdot3\cdot3-\\ -0\cdot5\cdot3-3\cdot4\cdot2-3\cdot2\cdot0=24-24=0A(2,1,2),B(2,5,2)AB=(2−2,5−1,2−2)=(0,4,0)AB⋅a1⋅a2==∣∣033453022∣∣=0⋅5⋅2+4⋅2⋅3+0⋅3⋅3−−0⋅5⋅3−3⋅4⋅2−3⋅2⋅0=24−24=0
lines are intersecting
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments