Two opposite vertices of a square are ( 3 , 4 ) (3,4) ( 3 , 4 ) and ( − 2 , − 1 ) . (-2,-1). ( − 2 , − 1 ) . Find the coordinates of other two vertices.
Assume A ( − 2 , − 1 ) A(-2, -1) A ( − 2 , − 1 ) and C ( 3 , 4 ) C(3, 4) C ( 3 , 4 ) are two opposite vertices of a square
A C → = ( 3 − ( − 2 ) , 4 − ( − 1 ) ) \overrightarrow{AC}=(3-(-2), 4-(-1)) A C = ( 3 − ( − 2 ) , 4 − ( − 1 ))
∣ A C → ∣ = 5 2 + 5 2 = 5 2 |\overrightarrow{AC}|=\sqrt{5^2+5^2}=5\sqrt{2} ∣ A C ∣ = 5 2 + 5 2 = 5 2 The side of the square is 5.
s l o p e A C = 4 − ( − 1 ) 3 − ( − 2 ) = 1 slope_{AC}=\dfrac{4-(-1)}{3-(-2)}=1 s l o p e A C = 3 − ( − 2 ) 4 − ( − 1 ) = 1 Then
s l o p e B D = − 1 slope_{BD}=-1 s l o p e B D = − 1 The equation of the B D BD B D is y = − x + b . y=-x+b. y = − x + b .
The center of the square is O ( 3 − 2 2 , 4 − 1 2 ) . O(\dfrac{3-2}{2},\dfrac{4-1}{2} ). O ( 2 3 − 2 , 2 4 − 1 ) .
Substitute
3 2 = − 1 2 + b = > b = 2 \dfrac{3}{2}=-\dfrac{1}{2}+b=>b=2 2 3 = − 2 1 + b => b = 2
B D : y = − x + 2 BD:y=-x+2 B D : y = − x + 2
The angle between A B AB A B and B D BD B D is 45 ° . 45\degree. 45°. Then the equation of A B AB A B is x = − 2. x=-2. x = − 2.
y = − ( − 2 ) + 2 = 4 y=-(-2)+2=4 y = − ( − 2 ) + 2 = 4 B ( − 2 , 4 ) B(-2, 4) B ( − 2 , 4 )
The angle between C D CD C D and B D BD B D is 45 ° . 45\degree. 45°. Then the equation of C D CD C D is x = 3. x=3. x = 3.
y = − 3 + 2 = − 1 y=-3+2=-1 y = − 3 + 2 = − 1 D ( 3 , − 1 ) D(3, -1) D ( 3 , − 1 )
Comments