The centroid is the average of the vertices:
x=4x1+x2+x3+x4=41+6−3=1
y=4y1+y2+y3+y4=4−1+1+2+6=2
z=4z1+z2+z3+z4=43+5=2
a)
for perpendicular vectors dot product = 0
we have:
AB=(5,2,3),BC=(−9,1,−3),CD=(3,4,5)
AC=(−4,3,0),AD=(−1,7,5),BD=(−6,5,2)
AB⋅BC=−45+2−9=0
AB⋅AC=−20+6=0
AB⋅AD=−5+14+15=0
AB⋅BD=−30+10+6=0
BC⋅CD=−27+4−15=0
BC⋅AC=36+3=0
BC⋅BD=54+5−6=0
CD⋅AC=−12+12=0
CD⋅AD=−3+28+25=0
CD⋅BD=−18+20+10=0
AC⋅AD=4+21=0
AD⋅BD=6+35+10=0
So, there is one right angle ∠ACD
b)
the eye is at point O
the viewer can see faces ABC and BCD
Comments
Leave a comment