"p=z+\\frac1z=1+i\\sqrt2+\\frac1{1+i\\sqrt2}"
Multiply the numerator and denominator of the fraction by "1-i\\sqrt2"
"p=1+i\\sqrt2+\\frac{1-i\\sqrt2}{3}=\\frac43+\\frac{2\\sqrt2}{3}i"Similarly, we do with "q"
In this diagram, the point "P" has coordinates ("\\frac43", "\\frac{2\\sqrt2}{3}") , and "Q" ("\\frac23", "\\frac{4\\sqrt2}{3}") . Find the coordinates "M"
Find the coordinates "G"
"G_y=M_y\\cdot\\frac23=\\frac{2\\sqrt2}3"
We define two vectors "\\overrightarrow{GP}(GP_x,GP_y)" and "\\overrightarrow{GQ}(GQ_x,GQ_y)" , if their scalar product is 0, then the angle between them is "90\\degree"
"GP_x=P_x-G_x=\\frac23"
"GP_y=P_y-G_y=0"
"GQ_x=Q_x-G_x=0"
"\\overrightarrow{GP}\\cdot\\overrightarrow{GQ}=GP_x\\cdot GQ_x+GP_y\\cdot GQ_y=0" ------> "\\angle PGQ" is a right angle
Comments
Leave a comment