Answer to Question #109920 in Analytic Geometry for Franxs

Question #109920
Show correct and complete solution.

1. Find the volume of the parallelepiped with the vertices in the given order: (0, 0, 0), (3, 0, 0), (0, 5, 1), (2, 0 , 5), (3, 5, 1), (5, 0, 5), (2, 5, 6), and (5, 5, 6). Sketch the solid.
1
Expert's answer
2020-04-20T18:36:56-0400

Volume(since this is the parallelepiped) = abc, where

a = distance((5,0,5), (2,0,5)) = 3

b = distance ((2,0,5), (2,5,6)) = (22)2+(05)2+(56)2=26\sqrt{\smash[b]{(2-2)^2 + (0 - 5)^2 + (5 - 6)^2}} = \sqrt{\smash[b]{26}}

c = distance ((5,0,5), (3,0,0)) = =(53)2+(00)2+(50)2=29= \sqrt{\smash[b]{(5 -3 )^2 + (0 - 0)^2 + (5 - 0)^2}} = \sqrt{\smash[b]{29}}

V = abc = 37543\sqrt{\smash[b]{754}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment