u=(u1,u2,u3),v=(v1,v2,v3),w=(w1,w2,w3)u=(u_1,u_2,u_3), v=(v_1,v_2,v_3), w=(w_1,w_2,w_3)u=(u1,u2,u3),v=(v1,v2,v3),w=(w1,w2,w3)
u×v=∣i⃗j⃗k⃗u1u2u3v1v2v3∣==i⃗⋅(u2v3−u3v2)−j⃗⋅(u1v3−u3v1)++k⃗⋅(u1v2−u2v1)==(u2v3−u3v2,−u1v3+u3v1,u1v2−u2v1)(u×v)×w==∣i⃗j⃗k⃗u2v3−u3v2−u1v3+u3v1u1v2−u2v1w1w2w3∣u\times v=\begin{vmatrix} \vec{i} &\vec{j}&\vec{k} \\ u_1 &u_2&u_3\\ v_1&v_2&v_3 \end{vmatrix}=\\ =\vec{i}\cdot(u_2v_3-u_3v_2)-\vec{j}\cdot(u_1v_3-u_3v_1)+\\ +\vec{k}\cdot(u_1v_2-u_2v_1)=\\ =(u_2v_3-u_3v_2,-u_1v_3+u_3v_1,u_1v_2-u_2v_1)\\ (u\times v)\times w=\\ =\begin{vmatrix} \vec{i} &\vec{j}&\vec{k} \\ u_2v_3-u_3v_2&-u_1v_3+u_3v_1&u_1v_2-u_2v_1\\ w_1&w_2&w_3 \end{vmatrix}u×v=∣∣iu1v1ju2v2ku3v3∣∣==i⋅(u2v3−u3v2)−j⋅(u1v3−u3v1)++k⋅(u1v2−u2v1)==(u2v3−u3v2,−u1v3+u3v1,u1v2−u2v1)(u×v)×w==∣∣iu2v3−u3v2w1j−u1v3+u3v1w2ku1v2−u2v1w3∣∣
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments