Question #107895
Suppose u, v and w are vectors in 3-space,where u =(u1u2, u3), v =(v1, v2, v3) and w= (w1, w2, w3).

Express ( u * v) * w as a determinant.
1
Expert's answer
2020-04-03T16:58:28-0400

u=(u1,u2,u3),v=(v1,v2,v3),w=(w1,w2,w3)u=(u_1,u_2,u_3), v=(v_1,v_2,v_3), w=(w_1,w_2,w_3)

u×v=ijku1u2u3v1v2v3==i(u2v3u3v2)j(u1v3u3v1)++k(u1v2u2v1)==(u2v3u3v2,u1v3+u3v1,u1v2u2v1)(u×v)×w==ijku2v3u3v2u1v3+u3v1u1v2u2v1w1w2w3u\times v=\begin{vmatrix} \vec{i} &\vec{j}&\vec{k} \\ u_1 &u_2&u_3\\ v_1&v_2&v_3 \end{vmatrix}=\\ =\vec{i}\cdot(u_2v_3-u_3v_2)-\vec{j}\cdot(u_1v_3-u_3v_1)+\\ +\vec{k}\cdot(u_1v_2-u_2v_1)=\\ =(u_2v_3-u_3v_2,-u_1v_3+u_3v_1,u_1v_2-u_2v_1)\\ (u\times v)\times w=\\ =\begin{vmatrix} \vec{i} &\vec{j}&\vec{k} \\ u_2v_3-u_3v_2&-u_1v_3+u_3v_1&u_1v_2-u_2v_1\\ w_1&w_2&w_3 \end{vmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS