u = ( u 1 , u 2 , u 3 ) , v = ( v 1 , v 2 , v 3 ) , w = ( w 1 , w 2 , w 3 ) u=(u_1,u_2,u_3), v=(v_1,v_2,v_3), w=(w_1,w_2,w_3) u = ( u 1 , u 2 , u 3 ) , v = ( v 1 , v 2 , v 3 ) , w = ( w 1 , w 2 , w 3 )
u × v = ∣ i ⃗ j ⃗ k ⃗ u 1 u 2 u 3 v 1 v 2 v 3 ∣ = = i ⃗ ⋅ ( u 2 v 3 − u 3 v 2 ) − j ⃗ ⋅ ( u 1 v 3 − u 3 v 1 ) + + k ⃗ ⋅ ( u 1 v 2 − u 2 v 1 ) = = ( u 2 v 3 − u 3 v 2 , − u 1 v 3 + u 3 v 1 , u 1 v 2 − u 2 v 1 ) ( u × v ) × w = = ∣ i ⃗ j ⃗ k ⃗ u 2 v 3 − u 3 v 2 − u 1 v 3 + u 3 v 1 u 1 v 2 − u 2 v 1 w 1 w 2 w 3 ∣ u\times v=\begin{vmatrix}
\vec{i} &\vec{j}&\vec{k} \\
u_1 &u_2&u_3\\
v_1&v_2&v_3
\end{vmatrix}=\\
=\vec{i}\cdot(u_2v_3-u_3v_2)-\vec{j}\cdot(u_1v_3-u_3v_1)+\\
+\vec{k}\cdot(u_1v_2-u_2v_1)=\\
=(u_2v_3-u_3v_2,-u_1v_3+u_3v_1,u_1v_2-u_2v_1)\\
(u\times v)\times w=\\
=\begin{vmatrix}
\vec{i} &\vec{j}&\vec{k} \\
u_2v_3-u_3v_2&-u_1v_3+u_3v_1&u_1v_2-u_2v_1\\
w_1&w_2&w_3
\end{vmatrix} u × v = ∣ ∣ i u 1 v 1 j u 2 v 2 k u 3 v 3 ∣ ∣ = = i ⋅ ( u 2 v 3 − u 3 v 2 ) − j ⋅ ( u 1 v 3 − u 3 v 1 ) + + k ⋅ ( u 1 v 2 − u 2 v 1 ) = = ( u 2 v 3 − u 3 v 2 , − u 1 v 3 + u 3 v 1 , u 1 v 2 − u 2 v 1 ) ( u × v ) × w = = ∣ ∣ i u 2 v 3 − u 3 v 2 w 1 j − u 1 v 3 + u 3 v 1 w 2 k u 1 v 2 − u 2 v 1 w 3 ∣ ∣
Comments