Answer to Question #98546 in Algebra for Shaheli Chattopadhyay

Question #98546
3. (a) If y = a + 13 is a solution of the cubic equation 3
y3= 4y + B = 0 such that 34 = — A, find the
quadratic equation having a 3and 133as
roots.
(b) Without Expanding the determinant 2
1 2 3
4 5 6
7 8 9
find its value.
4. (a) Prove that A u (A n B) = A for any two
subsets A and B of a set U.
(b) Check if the following system of equations
can be solved by cramer's rule. If it can be
solved, then apply the rule for solving the
system ; otherwise solve it by the Gaussian
elimination method.
x+y+z=6
x + 2y + 3z = 10
x -F 2y + 3z = 6.
5. (a) Show that 22n — 3n —1 is divisible by 9 using
the principle of mathematical induction.
(b) Find the greatest value of (3 — x)5(2 + x)6,
for — 2 < x < 3.
1
Expert's answer
2019-11-14T09:54:04-0500

3.(a) Find the quadratic equation having "a=3" and "a=133" as roots.  

Given "a_1=3, a_2=133." Complete the quadratic equation


"C(a-3)(a-133)=0, C\\not=0"

"Ca^2 -136Ca+399C=0, C\\not=0"


(b)


"\\begin{pmatrix}\n 1& 2 & 3 \\\\\n 4 & 5 & 6 \\\\\n 7 & 8 & 9\n\\end{pmatrix}"

Subtract row1 multiplied by 4 from row2 


"\\begin{pmatrix}\n 1& 2 & 3 \\\\\n 0 & -3 & -6 \\\\\n 7 & 8 & 9\n\\end{pmatrix}"

Subtract row1 multiplied by 7 from row3 


"\\begin{pmatrix}\n 1& 2 & 3 \\\\\n 0 & -3 & -6 \\\\\n 0 & -6 & -12\n\\end{pmatrix}"

Subtract row2 multiplied by 2 from row3


"\\begin{pmatrix}\n 1& 2 & 3 \\\\\n 0 & -3 & -6 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"

The determinant


"\\begin{vmatrix}\n 1& 2 & 3 \\\\\n 4 & 5 & 6 \\\\\n 7 & 8 & 9\n\\end{vmatrix}=\\begin{vmatrix}\n 1& 2 & 3 \\\\\n 0 & -3 & -6 \\\\\n 0 & 0 & 0\n\\end{vmatrix}=0"

4. (a)


"A\\cap B=\\{{x:x\\in A\\ and\\ x\\in B}\\}"

"A\\cup(A\\cap B)=\\{{x:x\\in A\\ or ( \\ x\\in A\\ and\\ x\\in B)}\\}"

Hence


"A\\cup(A\\cap B)=\\{{x:x\\in A}\\}=A"



(b)


"x+y+z=6""x+2y+3z=10""x-2y+3z=6"

"\\varDelta=\\begin{vmatrix}\n 1& 1 & 1 \\\\\n 1 & 2& 3 \\\\\n 1 & -2& 3\n\\end{vmatrix}=""=1\\begin{vmatrix}\n 2 & 3 \\\\\n -2 & 3\n\\end{vmatrix}-1\\begin{vmatrix}\n 1 & 3 \\\\\n 1 & 3\n\\end{vmatrix}+1\\begin{vmatrix}\n 1 & 2 \\\\\n 1 & -2\n\\end{vmatrix}=""=(2(3)-3(-2))-(1(3)-3(1))+(1(-2)-2(1))=""=12-0-4=8\\not=0"

"\\varDelta_x=\\begin{vmatrix}\n 6 & 1 & 1 \\\\\n 10 & 2& 3 \\\\\n 6 & -2 & 3\n\\end{vmatrix}=""=6\\begin{vmatrix}\n 2 & 3 \\\\\n -2 & 3\n\\end{vmatrix}-1\\begin{vmatrix}\n 10 & 3 \\\\\n 6 & 3\n\\end{vmatrix}+1\\begin{vmatrix}\n 10 & 2 \\\\\n 6 & -2\n\\end{vmatrix}=""=6(2(3)-3(-2))-(10(3)-3(6))+(10(-2)-2(6))=""=72-12-32=28"

"\\varDelta_y=\\begin{vmatrix}\n 1& 6 & 1 \\\\\n 1 & 10 & 3 \\\\\n 1 & 6 & 3\n\\end{vmatrix}=""=1\\begin{vmatrix}\n 10 & 3 \\\\\n 6 & 3\n\\end{vmatrix}-6\\begin{vmatrix}\n 1 & 3 \\\\\n 3 & 3\n\\end{vmatrix}+1\\begin{vmatrix}\n 1 & 10 \\\\\n 1 & 6\n\\end{vmatrix}=""=(10(3)-3(6))-6(1(3)-3(1))+(1(6)-10(1))=""=12-0-4=8"

"\\varDelta_z=\\begin{vmatrix}\n 1& 1 & 6 \\\\\n 1 & 2& 10 \\\\\n 1 & -2 & 6\n\\end{vmatrix}=""=1\\begin{vmatrix}\n 2 & 10 \\\\\n -2 & 6\n\\end{vmatrix}-1\\begin{vmatrix}\n 1 & 10 \\\\\n 1 & 6\n\\end{vmatrix}+6\\begin{vmatrix}\n 1 & 2 \\\\\n 1 & -2\n\\end{vmatrix}=""=(2(6)-10(-2))-(1(6)-10(1))+6(1(-2)-2(1))=""=32+4-24=12"

"x={\\varDelta_x \\over \\varDelta}={28 \\over 8}={7 \\over 2}"

"y={\\varDelta_y \\over \\varDelta}={8 \\over 8}=1"

"z={\\varDelta_z \\over \\varDelta}={12 \\over 8}={3 \\over 2}"

"({7 \\over 2},1, {3 \\over 2})"

5. (a)   

 Let the statement "P(n)" given as


"P(n):2^{2n}-3n-1\\ \\text{is divisible by 9,}n=1, 2, ...."

Base case:

"n=1: P(1)=2^{2(1)}-3(1)-1=0," is divisible by "9."

Assume that "P(n)" is true for some natural number "k," i.e.,


"P(k):2^{2k}-3k-1\\ \\text{is divisible by 9,}\\text{i.e.}""2^{2k}-3k-1=9q, q\\in \\N"

Now, to prove that "P(k+1)" is true, we have


"P(k+1)=2^{2(k+1)}-3(k+1)-1=""=4\\cdot2^{2k}-3k-3-1=""=4\\cdot2^{2k}-12k-4+12k+4-3k-3-1=""=4\\cdot(2^{2k}-3k-1)+9k=4(9q)+9=""=9(4q+1)=9m, m\\in \\N"

Thus "P(k+1)" is true, whenever "P(k)" is true. Hence, by the Principle of Mathematical Induction "P(n)" is true for all natural numbers "n."


(b)


"f(x)=(3-x)^5(2+x)^6,\\ -2<x<3"

"f'(x)=-5(3-x)^4(2+x)^6+6(3-x)^5(2+x)^5="

"=(3-x)^4(2+x)^5(-10-5x+18-6x)="

"=(3-x)^4(2+x)^5(8-11x)""f'(x)=0=>(3-x)^4(2+x)^5(8-11x)=0"

Find critical number(s)


"-2, {8 \\over 11} , 3"

First Derivative Test


"\\text{If }-2<x<{8 \\over 11}, f'(x)>0, f\\text{ increases}""\\text{If }{8 \\over 11}<x<3, f'(x)<0, f\\text{decreases}"

The greatest value of "(3-x)^5(2+x)^6" for "-2<x<3"

"f({8 \\over 11})=(3-{8 \\over 11})^5(2+{8 \\over 11})^6={25^5\\cdot30^6 \\over 11^{11}}\\approx"

"\\approx24952"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS