3.(a) Find the quadratic equation having a = 3 a=3 a = 3 and a = 133 a=133 a = 133 as roots.
Given a 1 = 3 , a 2 = 133. a_1=3, a_2=133. a 1 = 3 , a 2 = 133. Complete the quadratic equation
C ( a − 3 ) ( a − 133 ) = 0 , C ≠ 0 C(a-3)(a-133)=0, C\not=0 C ( a − 3 ) ( a − 133 ) = 0 , C = 0
C a 2 − 136 C a + 399 C = 0 , C ≠ 0 Ca^2 -136Ca+399C=0, C\not=0 C a 2 − 136 C a + 399 C = 0 , C = 0
(b)
( 1 2 3 4 5 6 7 8 9 ) \begin{pmatrix}
1& 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix} ⎝ ⎛ 1 4 7 2 5 8 3 6 9 ⎠ ⎞ Subtract row1 multiplied by 4 from row2
( 1 2 3 0 − 3 − 6 7 8 9 ) \begin{pmatrix}
1& 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 9
\end{pmatrix} ⎝ ⎛ 1 0 7 2 − 3 8 3 − 6 9 ⎠ ⎞ Subtract row1 multiplied by 7 from row3
( 1 2 3 0 − 3 − 6 0 − 6 − 12 ) \begin{pmatrix}
1& 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{pmatrix} ⎝ ⎛ 1 0 0 2 − 3 − 6 3 − 6 − 12 ⎠ ⎞ Subtract row2 multiplied by 2 from row3
( 1 2 3 0 − 3 − 6 0 0 0 ) \begin{pmatrix}
1& 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{pmatrix} ⎝ ⎛ 1 0 0 2 − 3 0 3 − 6 0 ⎠ ⎞ The determinant
∣ 1 2 3 4 5 6 7 8 9 ∣ = ∣ 1 2 3 0 − 3 − 6 0 0 0 ∣ = 0 \begin{vmatrix}
1& 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{vmatrix}=\begin{vmatrix}
1& 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{vmatrix}=0 ∣ ∣ 1 4 7 2 5 8 3 6 9 ∣ ∣ = ∣ ∣ 1 0 0 2 − 3 0 3 − 6 0 ∣ ∣ = 0 4. (a)
A ∩ B = { x : x ∈ A a n d x ∈ B } A\cap B=\{{x:x\in A\ and\ x\in B}\} A ∩ B = { x : x ∈ A an d x ∈ B }
A ∪ ( A ∩ B ) = { x : x ∈ A o r ( x ∈ A a n d x ∈ B ) } A\cup(A\cap B)=\{{x:x\in A\ or ( \ x\in A\ and\ x\in B)}\} A ∪ ( A ∩ B ) = { x : x ∈ A or ( x ∈ A an d x ∈ B ) } Hence
A ∪ ( A ∩ B ) = { x : x ∈ A } = A A\cup(A\cap B)=\{{x:x\in A}\}=A A ∪ ( A ∩ B ) = { x : x ∈ A } = A
(b)
x + y + z = 6 x+y+z=6 x + y + z = 6 x + 2 y + 3 z = 10 x+2y+3z=10 x + 2 y + 3 z = 10 x − 2 y + 3 z = 6 x-2y+3z=6 x − 2 y + 3 z = 6
Δ = ∣ 1 1 1 1 2 3 1 − 2 3 ∣ = \varDelta=\begin{vmatrix}
1& 1 & 1 \\
1 & 2& 3 \\
1 & -2& 3
\end{vmatrix}= Δ = ∣ ∣ 1 1 1 1 2 − 2 1 3 3 ∣ ∣ = = 1 ∣ 2 3 − 2 3 ∣ − 1 ∣ 1 3 1 3 ∣ + 1 ∣ 1 2 1 − 2 ∣ = =1\begin{vmatrix}
2 & 3 \\
-2 & 3
\end{vmatrix}-1\begin{vmatrix}
1 & 3 \\
1 & 3
\end{vmatrix}+1\begin{vmatrix}
1 & 2 \\
1 & -2
\end{vmatrix}= = 1 ∣ ∣ 2 − 2 3 3 ∣ ∣ − 1 ∣ ∣ 1 1 3 3 ∣ ∣ + 1 ∣ ∣ 1 1 2 − 2 ∣ ∣ = = ( 2 ( 3 ) − 3 ( − 2 ) ) − ( 1 ( 3 ) − 3 ( 1 ) ) + ( 1 ( − 2 ) − 2 ( 1 ) ) = =(2(3)-3(-2))-(1(3)-3(1))+(1(-2)-2(1))= = ( 2 ( 3 ) − 3 ( − 2 )) − ( 1 ( 3 ) − 3 ( 1 )) + ( 1 ( − 2 ) − 2 ( 1 )) = = 12 − 0 − 4 = 8 ≠ 0 =12-0-4=8\not=0 = 12 − 0 − 4 = 8 = 0
Δ x = ∣ 6 1 1 10 2 3 6 − 2 3 ∣ = \varDelta_x=\begin{vmatrix}
6 & 1 & 1 \\
10 & 2& 3 \\
6 & -2 & 3
\end{vmatrix}= Δ x = ∣ ∣ 6 10 6 1 2 − 2 1 3 3 ∣ ∣ = = 6 ∣ 2 3 − 2 3 ∣ − 1 ∣ 10 3 6 3 ∣ + 1 ∣ 10 2 6 − 2 ∣ = =6\begin{vmatrix}
2 & 3 \\
-2 & 3
\end{vmatrix}-1\begin{vmatrix}
10 & 3 \\
6 & 3
\end{vmatrix}+1\begin{vmatrix}
10 & 2 \\
6 & -2
\end{vmatrix}= = 6 ∣ ∣ 2 − 2 3 3 ∣ ∣ − 1 ∣ ∣ 10 6 3 3 ∣ ∣ + 1 ∣ ∣ 10 6 2 − 2 ∣ ∣ = = 6 ( 2 ( 3 ) − 3 ( − 2 ) ) − ( 10 ( 3 ) − 3 ( 6 ) ) + ( 10 ( − 2 ) − 2 ( 6 ) ) = =6(2(3)-3(-2))-(10(3)-3(6))+(10(-2)-2(6))= = 6 ( 2 ( 3 ) − 3 ( − 2 )) − ( 10 ( 3 ) − 3 ( 6 )) + ( 10 ( − 2 ) − 2 ( 6 )) = = 72 − 12 − 32 = 28 =72-12-32=28 = 72 − 12 − 32 = 28
Δ y = ∣ 1 6 1 1 10 3 1 6 3 ∣ = \varDelta_y=\begin{vmatrix}
1& 6 & 1 \\
1 & 10 & 3 \\
1 & 6 & 3
\end{vmatrix}= Δ y = ∣ ∣ 1 1 1 6 10 6 1 3 3 ∣ ∣ = = 1 ∣ 10 3 6 3 ∣ − 6 ∣ 1 3 3 3 ∣ + 1 ∣ 1 10 1 6 ∣ = =1\begin{vmatrix}
10 & 3 \\
6 & 3
\end{vmatrix}-6\begin{vmatrix}
1 & 3 \\
3 & 3
\end{vmatrix}+1\begin{vmatrix}
1 & 10 \\
1 & 6
\end{vmatrix}= = 1 ∣ ∣ 10 6 3 3 ∣ ∣ − 6 ∣ ∣ 1 3 3 3 ∣ ∣ + 1 ∣ ∣ 1 1 10 6 ∣ ∣ = = ( 10 ( 3 ) − 3 ( 6 ) ) − 6 ( 1 ( 3 ) − 3 ( 1 ) ) + ( 1 ( 6 ) − 10 ( 1 ) ) = =(10(3)-3(6))-6(1(3)-3(1))+(1(6)-10(1))= = ( 10 ( 3 ) − 3 ( 6 )) − 6 ( 1 ( 3 ) − 3 ( 1 )) + ( 1 ( 6 ) − 10 ( 1 )) = = 12 − 0 − 4 = 8 =12-0-4=8 = 12 − 0 − 4 = 8
Δ z = ∣ 1 1 6 1 2 10 1 − 2 6 ∣ = \varDelta_z=\begin{vmatrix}
1& 1 & 6 \\
1 & 2& 10 \\
1 & -2 & 6
\end{vmatrix}= Δ z = ∣ ∣ 1 1 1 1 2 − 2 6 10 6 ∣ ∣ = = 1 ∣ 2 10 − 2 6 ∣ − 1 ∣ 1 10 1 6 ∣ + 6 ∣ 1 2 1 − 2 ∣ = =1\begin{vmatrix}
2 & 10 \\
-2 & 6
\end{vmatrix}-1\begin{vmatrix}
1 & 10 \\
1 & 6
\end{vmatrix}+6\begin{vmatrix}
1 & 2 \\
1 & -2
\end{vmatrix}= = 1 ∣ ∣ 2 − 2 10 6 ∣ ∣ − 1 ∣ ∣ 1 1 10 6 ∣ ∣ + 6 ∣ ∣ 1 1 2 − 2 ∣ ∣ = = ( 2 ( 6 ) − 10 ( − 2 ) ) − ( 1 ( 6 ) − 10 ( 1 ) ) + 6 ( 1 ( − 2 ) − 2 ( 1 ) ) = =(2(6)-10(-2))-(1(6)-10(1))+6(1(-2)-2(1))= = ( 2 ( 6 ) − 10 ( − 2 )) − ( 1 ( 6 ) − 10 ( 1 )) + 6 ( 1 ( − 2 ) − 2 ( 1 )) = = 32 + 4 − 24 = 12 =32+4-24=12 = 32 + 4 − 24 = 12
x = Δ x Δ = 28 8 = 7 2 x={\varDelta_x \over \varDelta}={28 \over 8}={7 \over 2} x = Δ Δ x = 8 28 = 2 7
y = Δ y Δ = 8 8 = 1 y={\varDelta_y \over \varDelta}={8 \over 8}=1 y = Δ Δ y = 8 8 = 1
z = Δ z Δ = 12 8 = 3 2 z={\varDelta_z \over \varDelta}={12 \over 8}={3 \over 2} z = Δ Δ z = 8 12 = 2 3
( 7 2 , 1 , 3 2 ) ({7 \over 2},1, {3 \over 2}) ( 2 7 , 1 , 2 3 ) 5. (a)
Let the statement P ( n ) P(n) P ( n ) given as
P ( n ) : 2 2 n − 3 n − 1 is divisible by 9, n = 1 , 2 , . . . . P(n):2^{2n}-3n-1\ \text{is divisible by 9,}n=1, 2, .... P ( n ) : 2 2 n − 3 n − 1 is divisible by 9, n = 1 , 2 , .... Base case:
n = 1 : P ( 1 ) = 2 2 ( 1 ) − 3 ( 1 ) − 1 = 0 , n=1: P(1)=2^{2(1)}-3(1)-1=0, n = 1 : P ( 1 ) = 2 2 ( 1 ) − 3 ( 1 ) − 1 = 0 , is divisible by 9. 9. 9.
Assume that P ( n ) P(n) P ( n ) is true for some natural number k , k, k , i.e.,
P ( k ) : 2 2 k − 3 k − 1 is divisible by 9,i.e. P(k):2^{2k}-3k-1\ \text{is divisible by 9,}\text{i.e.} P ( k ) : 2 2 k − 3 k − 1 is divisible by 9, i.e. 2 2 k − 3 k − 1 = 9 q , q ∈ N 2^{2k}-3k-1=9q, q\in \N 2 2 k − 3 k − 1 = 9 q , q ∈ N Now, to prove that P ( k + 1 ) P(k+1) P ( k + 1 ) is true, we have
P ( k + 1 ) = 2 2 ( k + 1 ) − 3 ( k + 1 ) − 1 = P(k+1)=2^{2(k+1)}-3(k+1)-1= P ( k + 1 ) = 2 2 ( k + 1 ) − 3 ( k + 1 ) − 1 = = 4 ⋅ 2 2 k − 3 k − 3 − 1 = =4\cdot2^{2k}-3k-3-1= = 4 ⋅ 2 2 k − 3 k − 3 − 1 = = 4 ⋅ 2 2 k − 12 k − 4 + 12 k + 4 − 3 k − 3 − 1 = =4\cdot2^{2k}-12k-4+12k+4-3k-3-1= = 4 ⋅ 2 2 k − 12 k − 4 + 12 k + 4 − 3 k − 3 − 1 = = 4 ⋅ ( 2 2 k − 3 k − 1 ) + 9 k = 4 ( 9 q ) + 9 = =4\cdot(2^{2k}-3k-1)+9k=4(9q)+9= = 4 ⋅ ( 2 2 k − 3 k − 1 ) + 9 k = 4 ( 9 q ) + 9 = = 9 ( 4 q + 1 ) = 9 m , m ∈ N =9(4q+1)=9m, m\in \N = 9 ( 4 q + 1 ) = 9 m , m ∈ N Thus P ( k + 1 ) P(k+1) P ( k + 1 ) is true, whenever P ( k ) P(k) P ( k ) is true. Hence, by the Principle of Mathematical Induction P ( n ) P(n) P ( n ) is true for all natural numbers n . n. n .
(b)
f ( x ) = ( 3 − x ) 5 ( 2 + x ) 6 , − 2 < x < 3 f(x)=(3-x)^5(2+x)^6,\ -2<x<3 f ( x ) = ( 3 − x ) 5 ( 2 + x ) 6 , − 2 < x < 3
f ′ ( x ) = − 5 ( 3 − x ) 4 ( 2 + x ) 6 + 6 ( 3 − x ) 5 ( 2 + x ) 5 = f'(x)=-5(3-x)^4(2+x)^6+6(3-x)^5(2+x)^5= f ′ ( x ) = − 5 ( 3 − x ) 4 ( 2 + x ) 6 + 6 ( 3 − x ) 5 ( 2 + x ) 5 =
= ( 3 − x ) 4 ( 2 + x ) 5 ( − 10 − 5 x + 18 − 6 x ) = =(3-x)^4(2+x)^5(-10-5x+18-6x)= = ( 3 − x ) 4 ( 2 + x ) 5 ( − 10 − 5 x + 18 − 6 x ) =
= ( 3 − x ) 4 ( 2 + x ) 5 ( 8 − 11 x ) =(3-x)^4(2+x)^5(8-11x) = ( 3 − x ) 4 ( 2 + x ) 5 ( 8 − 11 x ) f ′ ( x ) = 0 = > ( 3 − x ) 4 ( 2 + x ) 5 ( 8 − 11 x ) = 0 f'(x)=0=>(3-x)^4(2+x)^5(8-11x)=0 f ′ ( x ) = 0 => ( 3 − x ) 4 ( 2 + x ) 5 ( 8 − 11 x ) = 0 Find critical number(s)
− 2 , 8 11 , 3 -2, {8 \over 11} , 3 − 2 , 11 8 , 3 First Derivative Test
If − 2 < x < 8 11 , f ′ ( x ) > 0 , f increases \text{If }-2<x<{8 \over 11}, f'(x)>0, f\text{ increases} If − 2 < x < 11 8 , f ′ ( x ) > 0 , f increases If 8 11 < x < 3 , f ′ ( x ) < 0 , f decreases \text{If }{8 \over 11}<x<3, f'(x)<0, f\text{decreases} If 11 8 < x < 3 , f ′ ( x ) < 0 , f decreases The greatest value of ( 3 − x ) 5 ( 2 + x ) 6 (3-x)^5(2+x)^6 ( 3 − x ) 5 ( 2 + x ) 6 for − 2 < x < 3 -2<x<3 − 2 < x < 3
f ( 8 11 ) = ( 3 − 8 11 ) 5 ( 2 + 8 11 ) 6 = 2 5 5 ⋅ 3 0 6 1 1 11 ≈ f({8 \over 11})=(3-{8 \over 11})^5(2+{8 \over 11})^6={25^5\cdot30^6 \over 11^{11}}\approx f ( 11 8 ) = ( 3 − 11 8 ) 5 ( 2 + 11 8 ) 6 = 1 1 11 2 5 5 ⋅ 3 0 6 ≈
≈ 24952 \approx24952 ≈ 24952
Comments