Question #98546
3. (a) If y = a + 13 is a solution of the cubic equation 3
y3= 4y + B = 0 such that 34 = — A, find the
quadratic equation having a 3and 133as
roots.
(b) Without Expanding the determinant 2
1 2 3
4 5 6
7 8 9
find its value.
4. (a) Prove that A u (A n B) = A for any two
subsets A and B of a set U.
(b) Check if the following system of equations
can be solved by cramer's rule. If it can be
solved, then apply the rule for solving the
system ; otherwise solve it by the Gaussian
elimination method.
x+y+z=6
x + 2y + 3z = 10
x -F 2y + 3z = 6.
5. (a) Show that 22n — 3n —1 is divisible by 9 using
the principle of mathematical induction.
(b) Find the greatest value of (3 — x)5(2 + x)6,
for — 2 < x < 3.
1
Expert's answer
2019-11-14T09:54:04-0500

3.(a) Find the quadratic equation having a=3a=3 and a=133a=133 as roots.  

Given a1=3,a2=133.a_1=3, a_2=133. Complete the quadratic equation


C(a3)(a133)=0,C0C(a-3)(a-133)=0, C\not=0

Ca2136Ca+399C=0,C0Ca^2 -136Ca+399C=0, C\not=0


(b)


(123456789)\begin{pmatrix} 1& 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}

Subtract row1 multiplied by 4 from row2 


(123036789)\begin{pmatrix} 1& 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{pmatrix}

Subtract row1 multiplied by 7 from row3 


(1230360612)\begin{pmatrix} 1& 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{pmatrix}

Subtract row2 multiplied by 2 from row3


(123036000)\begin{pmatrix} 1& 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix}

The determinant


123456789=123036000=0\begin{vmatrix} 1& 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}=\begin{vmatrix} 1& 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{vmatrix}=0

4. (a)


AB={x:xA and xB}A\cap B=\{{x:x\in A\ and\ x\in B}\}

A(AB)={x:xA or( xA and xB)}A\cup(A\cap B)=\{{x:x\in A\ or ( \ x\in A\ and\ x\in B)}\}

Hence


A(AB)={x:xA}=AA\cup(A\cap B)=\{{x:x\in A}\}=A



(b)


x+y+z=6x+y+z=6x+2y+3z=10x+2y+3z=10x2y+3z=6x-2y+3z=6

Δ=111123123=\varDelta=\begin{vmatrix} 1& 1 & 1 \\ 1 & 2& 3 \\ 1 & -2& 3 \end{vmatrix}==1232311313+11212==1\begin{vmatrix} 2 & 3 \\ -2 & 3 \end{vmatrix}-1\begin{vmatrix} 1 & 3 \\ 1 & 3 \end{vmatrix}+1\begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix}==(2(3)3(2))(1(3)3(1))+(1(2)2(1))==(2(3)-3(-2))-(1(3)-3(1))+(1(-2)-2(1))==1204=80=12-0-4=8\not=0

Δx=6111023623=\varDelta_x=\begin{vmatrix} 6 & 1 & 1 \\ 10 & 2& 3 \\ 6 & -2 & 3 \end{vmatrix}==62323110363+110262==6\begin{vmatrix} 2 & 3 \\ -2 & 3 \end{vmatrix}-1\begin{vmatrix} 10 & 3 \\ 6 & 3 \end{vmatrix}+1\begin{vmatrix} 10 & 2 \\ 6 & -2 \end{vmatrix}==6(2(3)3(2))(10(3)3(6))+(10(2)2(6))==6(2(3)-3(-2))-(10(3)-3(6))+(10(-2)-2(6))==721232=28=72-12-32=28

Δy=1611103163=\varDelta_y=\begin{vmatrix} 1& 6 & 1 \\ 1 & 10 & 3 \\ 1 & 6 & 3 \end{vmatrix}==11036361333+111016==1\begin{vmatrix} 10 & 3 \\ 6 & 3 \end{vmatrix}-6\begin{vmatrix} 1 & 3 \\ 3 & 3 \end{vmatrix}+1\begin{vmatrix} 1 & 10 \\ 1 & 6 \end{vmatrix}==(10(3)3(6))6(1(3)3(1))+(1(6)10(1))==(10(3)-3(6))-6(1(3)-3(1))+(1(6)-10(1))==1204=8=12-0-4=8

Δz=1161210126=\varDelta_z=\begin{vmatrix} 1& 1 & 6 \\ 1 & 2& 10 \\ 1 & -2 & 6 \end{vmatrix}==121026111016+61212==1\begin{vmatrix} 2 & 10 \\ -2 & 6 \end{vmatrix}-1\begin{vmatrix} 1 & 10 \\ 1 & 6 \end{vmatrix}+6\begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix}==(2(6)10(2))(1(6)10(1))+6(1(2)2(1))==(2(6)-10(-2))-(1(6)-10(1))+6(1(-2)-2(1))==32+424=12=32+4-24=12

x=ΔxΔ=288=72x={\varDelta_x \over \varDelta}={28 \over 8}={7 \over 2}

y=ΔyΔ=88=1y={\varDelta_y \over \varDelta}={8 \over 8}=1

z=ΔzΔ=128=32z={\varDelta_z \over \varDelta}={12 \over 8}={3 \over 2}

(72,1,32)({7 \over 2},1, {3 \over 2})

5. (a)   

 Let the statement P(n)P(n) given as


P(n):22n3n1 is divisible by 9,n=1,2,....P(n):2^{2n}-3n-1\ \text{is divisible by 9,}n=1, 2, ....

Base case:

n=1:P(1)=22(1)3(1)1=0,n=1: P(1)=2^{2(1)}-3(1)-1=0, is divisible by 9.9.

Assume that P(n)P(n) is true for some natural number k,k, i.e.,


P(k):22k3k1 is divisible by 9,i.e.P(k):2^{2k}-3k-1\ \text{is divisible by 9,}\text{i.e.}22k3k1=9q,qN2^{2k}-3k-1=9q, q\in \N

Now, to prove that P(k+1)P(k+1) is true, we have


P(k+1)=22(k+1)3(k+1)1=P(k+1)=2^{2(k+1)}-3(k+1)-1==422k3k31==4\cdot2^{2k}-3k-3-1==422k12k4+12k+43k31==4\cdot2^{2k}-12k-4+12k+4-3k-3-1==4(22k3k1)+9k=4(9q)+9==4\cdot(2^{2k}-3k-1)+9k=4(9q)+9==9(4q+1)=9m,mN=9(4q+1)=9m, m\in \N

Thus P(k+1)P(k+1) is true, whenever P(k)P(k) is true. Hence, by the Principle of Mathematical Induction P(n)P(n) is true for all natural numbers n.n.


(b)


f(x)=(3x)5(2+x)6, 2<x<3f(x)=(3-x)^5(2+x)^6,\ -2<x<3

f(x)=5(3x)4(2+x)6+6(3x)5(2+x)5=f'(x)=-5(3-x)^4(2+x)^6+6(3-x)^5(2+x)^5=

=(3x)4(2+x)5(105x+186x)==(3-x)^4(2+x)^5(-10-5x+18-6x)=

=(3x)4(2+x)5(811x)=(3-x)^4(2+x)^5(8-11x)f(x)=0=>(3x)4(2+x)5(811x)=0f'(x)=0=>(3-x)^4(2+x)^5(8-11x)=0

Find critical number(s)


2,811,3-2, {8 \over 11} , 3

First Derivative Test


If 2<x<811,f(x)>0,f increases\text{If }-2<x<{8 \over 11}, f'(x)>0, f\text{ increases}If 811<x<3,f(x)<0,fdecreases\text{If }{8 \over 11}<x<3, f'(x)<0, f\text{decreases}

The greatest value of (3x)5(2+x)6(3-x)^5(2+x)^6 for 2<x<3-2<x<3

f(811)=(3811)5(2+811)6=2553061111f({8 \over 11})=(3-{8 \over 11})^5(2+{8 \over 11})^6={25^5\cdot30^6 \over 11^{11}}\approx

24952\approx24952

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS