3.(a) Find the quadratic equation having "a=3" and "a=133" as roots.
Given "a_1=3, a_2=133." Complete the quadratic equation
"Ca^2 -136Ca+399C=0, C\\not=0"
(b)
Subtract row1 multiplied by 4 from row2
Subtract row1 multiplied by 7 from row3
Subtract row2 multiplied by 2 from row3
The determinant
4. (a)
"A\\cup(A\\cap B)=\\{{x:x\\in A\\ or ( \\ x\\in A\\ and\\ x\\in B)}\\}"
Hence
(b)
"\\varDelta=\\begin{vmatrix}\n 1& 1 & 1 \\\\\n 1 & 2& 3 \\\\\n 1 & -2& 3\n\\end{vmatrix}=""=1\\begin{vmatrix}\n 2 & 3 \\\\\n -2 & 3\n\\end{vmatrix}-1\\begin{vmatrix}\n 1 & 3 \\\\\n 1 & 3\n\\end{vmatrix}+1\\begin{vmatrix}\n 1 & 2 \\\\\n 1 & -2\n\\end{vmatrix}=""=(2(3)-3(-2))-(1(3)-3(1))+(1(-2)-2(1))=""=12-0-4=8\\not=0"
"\\varDelta_x=\\begin{vmatrix}\n 6 & 1 & 1 \\\\\n 10 & 2& 3 \\\\\n 6 & -2 & 3\n\\end{vmatrix}=""=6\\begin{vmatrix}\n 2 & 3 \\\\\n -2 & 3\n\\end{vmatrix}-1\\begin{vmatrix}\n 10 & 3 \\\\\n 6 & 3\n\\end{vmatrix}+1\\begin{vmatrix}\n 10 & 2 \\\\\n 6 & -2\n\\end{vmatrix}=""=6(2(3)-3(-2))-(10(3)-3(6))+(10(-2)-2(6))=""=72-12-32=28"
"\\varDelta_y=\\begin{vmatrix}\n 1& 6 & 1 \\\\\n 1 & 10 & 3 \\\\\n 1 & 6 & 3\n\\end{vmatrix}=""=1\\begin{vmatrix}\n 10 & 3 \\\\\n 6 & 3\n\\end{vmatrix}-6\\begin{vmatrix}\n 1 & 3 \\\\\n 3 & 3\n\\end{vmatrix}+1\\begin{vmatrix}\n 1 & 10 \\\\\n 1 & 6\n\\end{vmatrix}=""=(10(3)-3(6))-6(1(3)-3(1))+(1(6)-10(1))=""=12-0-4=8"
"\\varDelta_z=\\begin{vmatrix}\n 1& 1 & 6 \\\\\n 1 & 2& 10 \\\\\n 1 & -2 & 6\n\\end{vmatrix}=""=1\\begin{vmatrix}\n 2 & 10 \\\\\n -2 & 6\n\\end{vmatrix}-1\\begin{vmatrix}\n 1 & 10 \\\\\n 1 & 6\n\\end{vmatrix}+6\\begin{vmatrix}\n 1 & 2 \\\\\n 1 & -2\n\\end{vmatrix}=""=(2(6)-10(-2))-(1(6)-10(1))+6(1(-2)-2(1))=""=32+4-24=12"
"x={\\varDelta_x \\over \\varDelta}={28 \\over 8}={7 \\over 2}"
"y={\\varDelta_y \\over \\varDelta}={8 \\over 8}=1"
"z={\\varDelta_z \\over \\varDelta}={12 \\over 8}={3 \\over 2}"
"({7 \\over 2},1, {3 \\over 2})"
5. (a)
Let the statement "P(n)" given as
Base case:
"n=1: P(1)=2^{2(1)}-3(1)-1=0," is divisible by "9."
Assume that "P(n)" is true for some natural number "k," i.e.,
Now, to prove that "P(k+1)" is true, we have
Thus "P(k+1)" is true, whenever "P(k)" is true. Hence, by the Principle of Mathematical Induction "P(n)" is true for all natural numbers "n."
(b)
"f'(x)=-5(3-x)^4(2+x)^6+6(3-x)^5(2+x)^5="
"=(3-x)^4(2+x)^5(-10-5x+18-6x)="
"=(3-x)^4(2+x)^5(8-11x)""f'(x)=0=>(3-x)^4(2+x)^5(8-11x)=0"
Find critical number(s)
First Derivative Test
The greatest value of "(3-x)^5(2+x)^6" for "-2<x<3"
"f({8 \\over 11})=(3-{8 \\over 11})^5(2+{8 \\over 11})^6={25^5\\cdot30^6 \\over 11^{11}}\\approx""\\approx24952"
Comments
Leave a comment