Proof:
We need to show that the series converges.
Let "\\displaystyle\\sum_{i=1}^n""\\frac {1} {(2n+3) (2n+5)} =" "\\displaystyle\\sum_{i=1}^n" ui Here un ="\\frac {1} {(2n+3) (2n+5)}"
Let us consider the series "\\displaystyle\\sum_{i=1}^n" vi here vn ="\\frac {1} {n^2}"
Now, "\\lim\\limits_{n->\\infin}""\\frac {} { }""\\frac {u_n} {v_n}" = "\\lim\\limits_{n->\\infin}" "\\frac {\\frac {1} {[(2n+3) (2n+5)]}} {\\frac {1} {(n^2)}}" = "\\lim\\limits_{n->\\infin}" "\\frac {n^2} {(2n+3) (2n+5)}"
= "\\lim\\limits_{n->\\infin}""\\frac {1} {(2+\\frac {3} {n} ) (2+\\frac {5} {n})}" = "\\frac {1} {(2+0) (2+ 0) }" ( Here "\\frac {3} {\\infin } = 0" and "\\frac {5} {\\infin } = 0" )
= "\\frac {1} {4} < 1"
"\\lim\\limits_{n->\\infin}""\\frac {u_n} {v_n} < 1" , then the given series converges.
Answer: the series converges.
Comments
Leave a comment