Let x(1−ax)(1−bx)=A1−ax+B1−bx\frac{x}{(1-ax)(1-bx)}=\frac{A}{1-ax}+\frac{B}{1-bx}(1−ax)(1−bx)x=1−axA+1−bxB.
We have: x(1−ax)(1−bx)=A(1−bx)+B(1−ax)(1−ax)(1−bx)\frac{x}{(1-ax)(1-bx)}=\frac{A(1-bx)+B(1-ax)}{(1-ax)(1-bx)}(1−ax)(1−bx)x=(1−ax)(1−bx)A(1−bx)+B(1−ax) .
So, x=−(Ab+Ba)x+A+Bx=-(Ab+Ba)x+A+Bx=−(Ab+Ba)x+A+B or Ab+Ba=−1,A+B=0.Ab+Ba=-1, A+B=0.Ab+Ba=−1,A+B=0.
Solving this system for A and B we get: A=1a−b, B=1b−aA=\frac{1}{a-b}, \;\;B=\frac{1}{b-a}A=a−b1,B=b−a1.
Therefore, x(1−ax)(1−bx)=1(a−b)(1−ax)+1(b−a)(1−bx)\frac{x}{(1-ax)(1-bx)}=\frac{1}{(a-b)(1-ax)}+\frac{1}{(b-a)(1-bx)}(1−ax)(1−bx)x=(a−b)(1−ax)1+(b−a)(1−bx)1 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments