Question #90760
x÷{(1-ax) (1-bx) } = {1÷(a-b)}÷(1-ax) +{1÷(b-a)}÷(1-bx)
How pls explain??
1
Expert's answer
2019-06-12T11:33:19-0400

Let x(1ax)(1bx)=A1ax+B1bx\frac{x}{(1-ax)(1-bx)}=\frac{A}{1-ax}+\frac{B}{1-bx}.

We have: x(1ax)(1bx)=A(1bx)+B(1ax)(1ax)(1bx)\frac{x}{(1-ax)(1-bx)}=\frac{A(1-bx)+B(1-ax)}{(1-ax)(1-bx)} .

So, x=(Ab+Ba)x+A+Bx=-(Ab+Ba)x+A+B or Ab+Ba=1,A+B=0.Ab+Ba=-1, A+B=0.

Solving this system for A and B we get: A=1ab,    B=1baA=\frac{1}{a-b}, \;\;B=\frac{1}{b-a}.

Therefore, x(1ax)(1bx)=1(ab)(1ax)+1(ba)(1bx)\frac{x}{(1-ax)(1-bx)}=\frac{1}{(a-b)(1-ax)}+\frac{1}{(b-a)(1-bx)} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS