Let "\\frac{x}{(1-ax)(1-bx)}=\\frac{A}{1-ax}+\\frac{B}{1-bx}".
We have: "\\frac{x}{(1-ax)(1-bx)}=\\frac{A(1-bx)+B(1-ax)}{(1-ax)(1-bx)}" .
So, "x=-(Ab+Ba)x+A+B" or "Ab+Ba=-1, A+B=0."
Solving this system for A and B we get: "A=\\frac{1}{a-b}, \\;\\;B=\\frac{1}{b-a}".
Therefore, "\\frac{x}{(1-ax)(1-bx)}=\\frac{1}{(a-b)(1-ax)}+\\frac{1}{(b-a)(1-bx)}" .
Comments
Leave a comment