If a+b is a root of x^2+ax+b=0, then
( a + b ) 2 + a ( a + b ) + b = 0 (a+b)^2+a(a+b)+b=0 ( a + b ) 2 + a ( a + b ) + b = 0 Hence,
a 2 + 2 a b + b 2 + a 2 + a b + b = 0 a^2+2ab+b^2+a^2+ab+b=0 a 2 + 2 ab + b 2 + a 2 + ab + b = 0 which yields to
b 2 + b ( 3 a + 1 ) + 2 a 2 = 0 b^2+b(3a+1)+2a^2=0 b 2 + b ( 3 a + 1 ) + 2 a 2 = 0 Therefore,
a 2 + 6 a + 1 ≥ 0 a^2+6a+1\geq 0 a 2 + 6 a + 1 ≥ 0 and
b 1 = − ( 3 a + 1 ) + a 2 + 6 a + 1 2 , b_{1}=\frac{-(3a+1)+\sqrt{a^2+6a+1}}{2}, b 1 = 2 − ( 3 a + 1 ) + a 2 + 6 a + 1 , b 2 = − ( 3 a + 1 ) − a 2 + 6 a + 1 2 b_{2}=\frac{-(3a+1)-\sqrt{a^2+6a+1}}{2} b 2 = 2 − ( 3 a + 1 ) − a 2 + 6 a + 1 We have
a ∈ ( − ∞ , − 3 − 2 2 ) ∪ ( − 3 + 2 2 , + ∞ ) a\in(-\infty,-3-2\sqrt{2})\cup(-3+2\sqrt{2},+\infty) a ∈ ( − ∞ , − 3 − 2 2 ) ∪ ( − 3 + 2 2 , + ∞ ) If
a ∈ ( − ∞ , − 3 − 2 2 ) , a\in(-\infty,-3-2\sqrt{2}), a ∈ ( − ∞ , − 3 − 2 2 ) , then b_{1}^{2}>b_{2}^{2}. Hence, in this case b_{1}^{2} is the maximum value of b^2. Otherwise, if
a ∈ ( − 3 + 2 2 , + ∞ ) , a\in(-3+2\sqrt{2},+\infty), a ∈ ( − 3 + 2 2 , + ∞ ) , then b_{2}^{2}>b_{1}^{2}. In this case, b_{2}^{2} is the maximum value of b^2.
Comments