If a+b is a root of x^2+ax+b=0, then
"(a+b)^2+a(a+b)+b=0"Hence,
"a^2+2ab+b^2+a^2+ab+b=0"which yields to
"b^2+b(3a+1)+2a^2=0"Therefore,
"a^2+6a+1\\geq 0"and
"b_{1}=\\frac{-(3a+1)+\\sqrt{a^2+6a+1}}{2},""b_{2}=\\frac{-(3a+1)-\\sqrt{a^2+6a+1}}{2}"We have
"a\\in(-\\infty,-3-2\\sqrt{2})\\cup(-3+2\\sqrt{2},+\\infty)"If
"a\\in(-\\infty,-3-2\\sqrt{2}),"then b_{1}^{2}>b_{2}^{2}. Hence, in this case b_{1}^{2} is the maximum value of b^2. Otherwise, if
"a\\in(-3+2\\sqrt{2},+\\infty),"then b_{2}^{2}>b_{1}^{2}. In this case, b_{2}^{2} is the maximum value of b^2.
Comments
Leave a comment