If a+b is a root of x^2+ax+b=0, then
(a+b)2+a(a+b)+b=0 Hence,
a2+2ab+b2+a2+ab+b=0 which yields to
b2+b(3a+1)+2a2=0 Therefore,
a2+6a+1≥0 and
b1=2−(3a+1)+a2+6a+1,b2=2−(3a+1)−a2+6a+1 We have
a∈(−∞,−3−22)∪(−3+22,+∞) If
a∈(−∞,−3−22),then b_{1}^{2}>b_{2}^{2}. Hence, in this case b_{1}^{2} is the maximum value of b^2. Otherwise, if
a∈(−3+22,+∞),then b_{2}^{2}>b_{1}^{2}. In this case, b_{2}^{2} is the maximum value of b^2.
Comments