We have to prove
∑ i = 1 n 1 i ≤ 1 n ! ∏ i = 2 n ( i − 1 ) + 2 ∑ i = 2 n 1 i \displaystyle\sum_{i=1}^n{1 \over \sqrt{i}}\leq {1 \over \sqrt{n!}}\displaystyle\prod_{i=2}^n(\sqrt{i-1})+2\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}} i = 1 ∑ n i 1 ≤ n ! 1 i = 2 ∏ n ( i − 1 ) + 2 i = 2 ∑ n i 1
Consider
∑ i = 1 n 1 i = 1 + ∑ i = 2 n 1 i \displaystyle\sum_{i=1}^n{1 \over \sqrt{i}}=1+\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}} i = 1 ∑ n i 1 = 1 + i = 2 ∑ n i 1 Subtract ( 2 ∑ i = 2 n 1 i ) (2\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}}) ( 2 i = 2 ∑ n i 1 ) from both sides
∑ i = 1 n 1 i − 2 ∑ i = 2 n 1 i = 1 + ∑ i = 2 n 1 i − 2 ∑ i = 2 n 1 i \displaystyle\sum_{i=1}^n{1 \over \sqrt{i}}-2\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}}=1+\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}}-2\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}} i = 1 ∑ n i 1 − 2 i = 2 ∑ n i 1 = 1 + i = 2 ∑ n i 1 − 2 i = 2 ∑ n i 1
∑ i = 1 n 1 i − 2 ∑ i = 2 n 1 i = 1 − ∑ i = 2 n 1 i \displaystyle\sum_{i=1}^n{1 \over \sqrt{i}}-2\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}}=1-\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}} i = 1 ∑ n i 1 − 2 i = 2 ∑ n i 1 = 1 − i = 2 ∑ n i 1
Hence we can rewrite the original inequality as
1 − ∑ i = 2 n 1 i ≤ 1 n ! ∏ i = 2 n ( i − 1 ) 1-\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}}\leq {1 \over \sqrt{n!}}\displaystyle\prod_{i=2}^n(\sqrt{i-1}) 1 − i = 2 ∑ n i 1 ≤ n ! 1 i = 2 ∏ n ( i − 1 ) By the Weierstrass inequality (since 1 i ∈ ( 0 , 1 ] {1 \over \sqrt{i}}\isin (0, 1] i 1 ∈ ( 0 , 1 ] for all i ∈ Z + i \in\Z^+ i ∈ Z + ) we have
1 − ∑ i = 2 n 1 i ≤ ∏ i = 2 n ( 1 − 1 i ) = ∏ i = 2 n ( i − 1 i ) = 1 n ! ∏ i = 2 n ( i − 1 ) 1-\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}}\leq \displaystyle\prod_{i=2}^n(1-{1 \over \sqrt{i}})= \displaystyle\prod_{i=2}^n({\sqrt i-1 \over \sqrt{i}})={1 \over \sqrt{n!}}\displaystyle\prod_{i=2}^n(\sqrt {i}-1) 1 − i = 2 ∑ n i 1 ≤ i = 2 ∏ n ( 1 − i 1 ) = i = 2 ∏ n ( i i − 1 ) = n ! 1 i = 2 ∏ n ( i − 1 ) For all i ∈ Z + i \in\Z^+ i ∈ Z +
i − i − 1 = i − ( i − 1 ) i + i − 1 ≤ 1 \sqrt{i}-\sqrt{i-1}={i-(i-1) \over {\sqrt{i}+\sqrt{i-1}}}\leq1 i − i − 1 = i + i − 1 i − ( i − 1 ) ≤ 1
Then
i − 1 ≤ i − 1 \sqrt{i}-1\leq\sqrt{i-1} i − 1 ≤ i − 1 Hence
1 − ∑ i = 2 n 1 i ≤ 1 n ! ∏ i = 2 n ( i − 1 ) ≤ 1 n ! ∏ i = 2 n ( i − 1 ) 1-\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}}\leq{1 \over \sqrt{n!}}\displaystyle\prod_{i=2}^n(\sqrt {i}-1)\leq {1 \over \sqrt{n!}}\displaystyle\prod_{i=2}^n(\sqrt {i-1}) 1 − i = 2 ∑ n i 1 ≤ n ! 1 i = 2 ∏ n ( i − 1 ) ≤ n ! 1 i = 2 ∏ n ( i − 1 ) Therefore, we prove that
∑ i = 1 n 1 i ≤ 1 n ! ∏ i = 2 n ( i − 1 ) + 2 ∑ i = 2 n 1 i \displaystyle\sum_{i=1}^n{1 \over \sqrt{i}}\leq {1 \over \sqrt{n!}}\displaystyle\prod_{i=2}^n(\sqrt{i-1})+2\displaystyle\sum_{i=2}^n{1 \over \sqrt{i}} i = 1 ∑ n i 1 ≤ n ! 1 i = 2 ∏ n ( i − 1 ) + 2 i = 2 ∑ n i 1
Comments
Dear Sakshi, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanx alot for this solution and this fast service