We have to prove
"\\displaystyle\\sum_{i=1}^n{1 \\over \\sqrt{i}}\\leq {1 \\over \\sqrt{n!}}\\displaystyle\\prod_{i=2}^n(\\sqrt{i-1})+2\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}"
Consider
"\\displaystyle\\sum_{i=1}^n{1 \\over \\sqrt{i}}=1+\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}" Subtract "(2\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}})" from both sides
"\\displaystyle\\sum_{i=1}^n{1 \\over \\sqrt{i}}-2\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}=1+\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}-2\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}"
"\\displaystyle\\sum_{i=1}^n{1 \\over \\sqrt{i}}-2\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}=1-\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}"
Hence we can rewrite the original inequality as
"1-\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}\\leq {1 \\over \\sqrt{n!}}\\displaystyle\\prod_{i=2}^n(\\sqrt{i-1})" By the Weierstrass inequality (since "{1 \\over \\sqrt{i}}\\isin (0, 1]" for all "i \\in\\Z^+") we have
"1-\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}\\leq \\displaystyle\\prod_{i=2}^n(1-{1 \\over \\sqrt{i}})= \\displaystyle\\prod_{i=2}^n({\\sqrt i-1 \\over \\sqrt{i}})={1 \\over \\sqrt{n!}}\\displaystyle\\prod_{i=2}^n(\\sqrt {i}-1)" For all "i \\in\\Z^+"
"\\sqrt{i}-\\sqrt{i-1}={i-(i-1) \\over {\\sqrt{i}+\\sqrt{i-1}}}\\leq1"
Then
"\\sqrt{i}-1\\leq\\sqrt{i-1}" Hence
"1-\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}\\leq{1 \\over \\sqrt{n!}}\\displaystyle\\prod_{i=2}^n(\\sqrt {i}-1)\\leq {1 \\over \\sqrt{n!}}\\displaystyle\\prod_{i=2}^n(\\sqrt {i-1})" Therefore, we prove that
"\\displaystyle\\sum_{i=1}^n{1 \\over \\sqrt{i}}\\leq {1 \\over \\sqrt{n!}}\\displaystyle\\prod_{i=2}^n(\\sqrt{i-1})+2\\displaystyle\\sum_{i=2}^n{1 \\over \\sqrt{i}}"
Comments
Dear Sakshi, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanx alot for this solution and this fast service
Leave a comment