For all "a,b\\in R" we have the triangle inequality
"|a|+|b|\\ge |a+b|"Setting "a={{x}_{1}}-{{x}_{2}}" and "b={{x}_{2}}", we obtain
"|{{x}_{1}}-{{x}_{2}}|+|{{x}_{2}}|\\ge|{{x}_{1}}-{{x}_{2}}+{{x}_{2}}|"That is
"|{{x}_{1}}-{{x}_{2}}|\\ge |{{x}_{1}}|-|{{x}_{2}}|"It follows that there exist x1 and x2 for which inequality
"|{{x}_{1}}-{{x}_{2}}|>|{{x}_{1}}|-|{{x}_{2}}|"holds. For example, if x1=2 and x2=-3 we have
"|2-\\left( -3 \\right)|>|2|-|-3|"or
"|5|>|2|-|3|"that is
"5>-1"Hence, the statement
"|{{x}_{1}}-{{x}_{2}}|\\,=\\,|{{x}_{1}}|\\,-|{{x}_{2}}|"is false.
Comments
Leave a comment