Question #88221
Prove that: 2^n > 1+n√2^(n-1) for all n>2 using the concept of inequalities only.
1
Expert's answer
2019-05-07T07:40:33-0400

Inequality Between Means (AM-GM inequality)

Let a1,a2,...,an,a_1, a_2,...,a_n, be positive real numbers. Then


a1+a2+...+anna1a2...ann{a_1+a_2+...+a_n \over n}\geq \sqrt[n]{a_1a_2...a_n}

Equality occurs if and only if a1=a2=...=ana_1=a_2=...=a_n or n=1.n=1.


Consider the geometric sequence 1,2,4,8,...1,2,4,8,...


b1=1,q=2,b_1=1, q=2,Sn=b1+b2+...+bn=i=1nbi=1+2+...+2n1=S_n=b_1+b_2+...+b_n=\displaystyle\sum_{i=1}^n b_i=1+2+...+2^{n-1}==b1(1qn1q)=1(12n12)=2n1=b_1({1-q^n \over 1-q})=1({1-2^n \over 1-2})=2^n-1


b1b2...bnn=124...2n1n\sqrt[n]{b_1b_2...b_n}=\sqrt[n]{1\cdotp2\cdotp4\cdotp...\cdotp2^{n-1}}


1+2+3+...(n1)=1+n12(n1)=n(n1)21+2+3+...(n-1)={1+n-1 \over 2}\cdotp (n-1)={n(n-1) \over 2}

For n2n\geq 2 we have


1+2+...+2n1n>124...2n1n{1+2+...+2^{n-1} \over n}> \sqrt[n]{1\cdotp2\cdotp4\cdotp...\cdotp2^{n-1}}

2n1n>2n(n1)2n{2^n-1 \over n}> 2^{{n(n-1) \over {2n}}}

2n1n>2n12{2^n-1 \over n}> 2^{{n-1 \over {2}}}

2n>1+(2)n1,n22^n>1+(\sqrt{2})^{n-1} ,n\geq2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
12.05.19, 21:17

Because the initial inequality contains √2^(n-1), so n-1 terms should be considered. The formula for the sum of geometric progression uses the number of terms in the sum and the sum 1+2+4+...+2^(n-1) contains n terms. The correctness of the formula also can be checked by substitution of n=1 into the left and the right sides of the formula.

Ragha
11.05.19, 16:44

How come there are n-1 terms why not n? and why is Sum of 1+2+4+.....+2^(n-1)=2^n -1 why not 2^(n-1) -1?

LATEST TUTORIALS
APPROVED BY CLIENTS