Inequality Between Means (AM-GM inequality)
Let "a_1, a_2,...,a_n," be positive real numbers. Then
"{a_1+a_2+...+a_n \\over n}\\geq \\sqrt[n]{a_1a_2...a_n}" Equality occurs if and only if "a_1=a_2=...=a_n" or "n=1."
Consider the geometric sequence "1,2,4,8,..."
"b_1=1, q=2,""S_n=b_1+b_2+...+b_n=\\displaystyle\\sum_{i=1}^n b_i=1+2+...+2^{n-1}=""=b_1({1-q^n \\over 1-q})=1({1-2^n \\over 1-2})=2^n-1"
"\\sqrt[n]{b_1b_2...b_n}=\\sqrt[n]{1\\cdotp2\\cdotp4\\cdotp...\\cdotp2^{n-1}}"
"1+2+3+...(n-1)={1+n-1 \\over 2}\\cdotp (n-1)={n(n-1) \\over 2}" For "n\\geq 2" we have
"{1+2+...+2^{n-1} \\over n}> \\sqrt[n]{1\\cdotp2\\cdotp4\\cdotp...\\cdotp2^{n-1}}"
"{2^n-1 \\over n}> 2^{{n(n-1) \\over {2n}}}"
"{2^n-1 \\over n}> 2^{{n-1 \\over {2}}}"
"2^n>1+(\\sqrt{2})^{n-1} ,n\\geq2"
Comments
Because the initial inequality contains √2^(n-1), so n-1 terms should be considered. The formula for the sum of geometric progression uses the number of terms in the sum and the sum 1+2+4+...+2^(n-1) contains n terms. The correctness of the formula also can be checked by substitution of n=1 into the left and the right sides of the formula.
How come there are n-1 terms why not n? and why is Sum of 1+2+4+.....+2^(n-1)=2^n -1 why not 2^(n-1) -1?
Leave a comment