Question #86951
Consider the equation 3 E ≡ 5x − 2y = .
Write down equations E , respectively so that 1 E,
2 E,
3
i) E and E are inconsistent; 1
ii) E and E have a unique solution; 2
iii) E and E have infinitely many solutions.
1
Expert's answer
2019-04-01T10:34:48-0400

A system of two linear equations in two variables has the form


a1x+b1y=c1a2x+b2y=c2\begin{matrix} a_1x+b_1y=c_1 \\ a_2x+b_2y=c_2 \end{matrix}

For a system of linear equations in two variables, exactly one of the following is true

1. The system has no solution.


a1b1a2b2=0, butc1b1c2b2=, ora1c1a2c2=\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}=0,\ but \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}=\not0,\ or\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}=\not0

E: 5x2y=3E1:15x+6y=5\begin{matrix} E: \ 5x-2y=3 \\ E1: -15x+6y=-5 \end{matrix}

2. The system has exactly one solution.


a1b1a2b2=\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}=\not0

E:5x2y=3E2:x+6y=5\begin{matrix} E: 5x-2y=3 \\ E2: x+6y=-5 \end{matrix}

3. The system has infinitely many solutions.


a1b1a2b2=0,c1b1c2b2=0,a1c1a2c2=0\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}=0, \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}=0,\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}=0

E:5x2y=3E3:10x4y=6\begin{matrix} E: 5x-2y=3 \\ E3: 10x-4y=6 \end{matrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS