use pascals triangle to expand the binomical expression (1+2x)^3?
Let's write first few lines of Pascal's triangle:
1 1 1 1 2 11 3 3 1~~~~~~~~~~~~1\\ ~~~~~~~~1~~~~~~~1\\ ~~~~1~~~~~~2~~~~~~~1\\ 1~~~~~~3~~~~~~~3~~~~~~1 1 1 1 1 2 11 3 3 1
We can see that coefficients for cubic binomial are 1, 3, 3, 1.
(1+2x)3=1⋅13+3⋅12⋅2x++3⋅1⋅(2x)2+1⋅(2x)3==1+6x+12x2+8x3(1+2x)^3=1\cdot1^3+3\cdot1^2\cdot2x+\\ +3\cdot1\cdot(2x)^2+1\cdot(2x)^3=\\ =1+6x+12x^2+8x^3(1+2x)3=1⋅13+3⋅12⋅2x++3⋅1⋅(2x)2+1⋅(2x)3==1+6x+12x2+8x3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments