Find the smallest positive integer a
for which there exist distinct positive integers b,c,d
such that a=b^2=c^3=d^4
.
a=b2=c3=d4;
maximum degree = "3*4=12", so
x12=(x6)2=(x4)3=(x3)4, so
if x=1, then a=b=c=d=1, no distinct positive integers
if x=2, then 212=(26)2=(24)3=(23)4, so
a=4096, b=64, c=16, d=8
Answer: 4096
Comments
Leave a comment