find points of intersection of
f(x)=x^4+8x^3+16x^2
g(x)=5-4x^2-16x
"f(x)=x^4+8x^3+16x^2"
"g(x)=5-4x^2-16x"
To find the point of intersection, let's equate both equations. This gives
"x^4+8x^3+16x^2=5-4x^2-16x"
"x^4+8x^3+16x^2-5+4x^2+16x=0"
"x^4+8x^3+16x^2+4x^2+16x-5=0"
"x^4+8x^3+20x^2+16x-5=0"
"x^4+" "8x^3+20x^2+16x=5"
"x(x+2)^2(x+4)=5"
"\\left[x(x+4)-1\\right]\\left[x(x+4)+5\\right]=0"
"[x^2+4x-1][x^2+4x+5]=0"
Hence, we set "[x^2+4x-1]=0\\hspace{0.2cm}and\\hspace{0.2cm}[x^2+4x+5]=0"
"[x^2+4x-1]=0"
solving quadratically, we have
"\\displaystyle \\implies x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}\\\\\\displaystyle \\implies x=\\frac{-4\\pm\\sqrt{4^2-4(1)(-1)}}{2(1)}"
"\\displaystyle \\implies\\frac{-4\\pm\\sqrt{16+4}}{2}"
"\\displaystyle \\implies\\frac{-4\\pm\\sqrt{20}}{2}"
"\\displaystyle \\implies\\frac{-4}{2}\\pm\\frac{\\sqrt{20}}{2}"
"\\displaystyle \\implies-2\\pm\\frac{2\\sqrt{5}}{2}"
"\\displaystyle \\implies-2\\pm{\\sqrt{5}}"
"\\displaystyle \\implies-2+{\\sqrt{5}}\\hspace{0.2cm}or\\hspace{0.2cm}\\displaystyle \\implies-2-{\\sqrt{5}}"
Also, solving the second Quadratic equation similarly, we have
"[x^2+4x+5]=0"
"\\displaystyle \\implies x=\\frac{-4\\pm\\sqrt{4^2-4(1)(5)}}{2(1)}"
"\\displaystyle \\implies\\frac{-4\\pm\\sqrt{16-20}}{2}"
"\\displaystyle \\implies\\frac{-4\\pm\\sqrt{-4}}{2}"
"\\displaystyle \\implies\\frac{-4}{2}\\pm\\frac{\\sqrt{-4}}{2}"
"\\displaystyle \\implies-2\\pm\\frac{2i}{2}"
"\\displaystyle \\implies-2\\pm i"
"\\implies -2+i\\hspace{0.2cm}or\\hspace{0.2cm}-2-i"
Finding the roots of the polynomial,
"x=(-\\sqrt5-2,-2+\\sqrt5,-2-i,-2+i)"
let "y=f(x)=g(x)"
substituting "x" into either "f(x) or g(x)" we get the same value for "y."
Let's substitute "x" into "g(x)"
"y=5-4x^2-16x"
"\\implies y=(1,25)"
The points of intersection are
"(-\\sqrt5-2,1),(-2+\\sqrt5,1),(-2-i,25),(-2+i,25)."
Comments
Leave a comment