f ( x ) = x 4 + 8 x 3 + 16 x 2 f(x)=x^4+8x^3+16x^2 f ( x ) = x 4 + 8 x 3 + 16 x 2
g ( x ) = 5 − 4 x 2 − 16 x g(x)=5-4x^2-16x g ( x ) = 5 − 4 x 2 − 16 x
To find the point of intersection, let's equate both equations. This gives
x 4 + 8 x 3 + 16 x 2 = 5 − 4 x 2 − 16 x x^4+8x^3+16x^2=5-4x^2-16x x 4 + 8 x 3 + 16 x 2 = 5 − 4 x 2 − 16 x
x 4 + 8 x 3 + 16 x 2 − 5 + 4 x 2 + 16 x = 0 x^4+8x^3+16x^2-5+4x^2+16x=0 x 4 + 8 x 3 + 16 x 2 − 5 + 4 x 2 + 16 x = 0
x 4 + 8 x 3 + 16 x 2 + 4 x 2 + 16 x − 5 = 0 x^4+8x^3+16x^2+4x^2+16x-5=0 x 4 + 8 x 3 + 16 x 2 + 4 x 2 + 16 x − 5 = 0
x 4 + 8 x 3 + 20 x 2 + 16 x − 5 = 0 x^4+8x^3+20x^2+16x-5=0 x 4 + 8 x 3 + 20 x 2 + 16 x − 5 = 0
x 4 + x^4+ x 4 + 8 x 3 + 20 x 2 + 16 x = 5 8x^3+20x^2+16x=5 8 x 3 + 20 x 2 + 16 x = 5
x ( x + 2 ) 2 ( x + 4 ) = 5 x(x+2)^2(x+4)=5 x ( x + 2 ) 2 ( x + 4 ) = 5
[ x ( x + 4 ) − 1 ] [ x ( x + 4 ) + 5 ] = 0 \left[x(x+4)-1\right]\left[x(x+4)+5\right]=0 [ x ( x + 4 ) − 1 ] [ x ( x + 4 ) + 5 ] = 0
[ x 2 + 4 x − 1 ] [ x 2 + 4 x + 5 ] = 0 [x^2+4x-1][x^2+4x+5]=0 [ x 2 + 4 x − 1 ] [ x 2 + 4 x + 5 ] = 0
Hence, we set [ x 2 + 4 x − 1 ] = 0 a n d [ x 2 + 4 x + 5 ] = 0 [x^2+4x-1]=0\hspace{0.2cm}and\hspace{0.2cm}[x^2+4x+5]=0 [ x 2 + 4 x − 1 ] = 0 an d [ x 2 + 4 x + 5 ] = 0
[ x 2 + 4 x − 1 ] = 0 [x^2+4x-1]=0 [ x 2 + 4 x − 1 ] = 0
solving quadratically, we have
⟹ x = − b ± b 2 − 4 a c 2 a ⟹ x = − 4 ± 4 2 − 4 ( 1 ) ( − 1 ) 2 ( 1 ) \displaystyle \implies x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\\displaystyle \implies x=\frac{-4\pm\sqrt{4^2-4(1)(-1)}}{2(1)} ⟹ x = 2 a − b ± b 2 − 4 a c ⟹ x = 2 ( 1 ) − 4 ± 4 2 − 4 ( 1 ) ( − 1 )
⟹ − 4 ± 16 + 4 2 \displaystyle \implies\frac{-4\pm\sqrt{16+4}}{2} ⟹ 2 − 4 ± 16 + 4
⟹ − 4 ± 20 2 \displaystyle \implies\frac{-4\pm\sqrt{20}}{2} ⟹ 2 − 4 ± 20
⟹ − 4 2 ± 20 2 \displaystyle \implies\frac{-4}{2}\pm\frac{\sqrt{20}}{2} ⟹ 2 − 4 ± 2 20
⟹ − 2 ± 2 5 2 \displaystyle \implies-2\pm\frac{2\sqrt{5}}{2} ⟹ − 2 ± 2 2 5
⟹ − 2 ± 5 \displaystyle \implies-2\pm{\sqrt{5}} ⟹ − 2 ± 5
⟹ − 2 + 5 o r ⟹ − 2 − 5 \displaystyle \implies-2+{\sqrt{5}}\hspace{0.2cm}or\hspace{0.2cm}\displaystyle \implies-2-{\sqrt{5}} ⟹ − 2 + 5 or ⟹ − 2 − 5
Also, solving the second Quadratic equation similarly, we have
[ x 2 + 4 x + 5 ] = 0 [x^2+4x+5]=0 [ x 2 + 4 x + 5 ] = 0
⟹ x = − 4 ± 4 2 − 4 ( 1 ) ( 5 ) 2 ( 1 ) \displaystyle \implies x=\frac{-4\pm\sqrt{4^2-4(1)(5)}}{2(1)} ⟹ x = 2 ( 1 ) − 4 ± 4 2 − 4 ( 1 ) ( 5 )
⟹ − 4 ± 16 − 20 2 \displaystyle \implies\frac{-4\pm\sqrt{16-20}}{2} ⟹ 2 − 4 ± 16 − 20
⟹ − 4 ± − 4 2 \displaystyle \implies\frac{-4\pm\sqrt{-4}}{2} ⟹ 2 − 4 ± − 4
⟹ − 4 2 ± − 4 2 \displaystyle \implies\frac{-4}{2}\pm\frac{\sqrt{-4}}{2} ⟹ 2 − 4 ± 2 − 4
⟹ − 2 ± 2 i 2 \displaystyle \implies-2\pm\frac{2i}{2} ⟹ − 2 ± 2 2 i
⟹ − 2 ± i \displaystyle \implies-2\pm i ⟹ − 2 ± i
⟹ − 2 + i o r − 2 − i \implies -2+i\hspace{0.2cm}or\hspace{0.2cm}-2-i ⟹ − 2 + i or − 2 − i
Finding the roots of the polynomial,
x = ( − 5 − 2 , − 2 + 5 , − 2 − i , − 2 + i ) x=(-\sqrt5-2,-2+\sqrt5,-2-i,-2+i) x = ( − 5 − 2 , − 2 + 5 , − 2 − i , − 2 + i )
let y = f ( x ) = g ( x ) y=f(x)=g(x) y = f ( x ) = g ( x )
substituting x x x into either f ( x ) o r g ( x ) f(x) or g(x) f ( x ) or g ( x ) we get the same value for y . y. y .
Let's substitute x x x into g ( x ) g(x) g ( x )
y = 5 − 4 x 2 − 16 x y=5-4x^2-16x y = 5 − 4 x 2 − 16 x
⟹ y = ( 1 , 25 ) \implies y=(1,25) ⟹ y = ( 1 , 25 )
The points of intersection are
( − 5 − 2 , 1 ) , ( − 2 + 5 , 1 ) , ( − 2 − i , 25 ) , ( − 2 + i , 25 ) . (-\sqrt5-2,1),(-2+\sqrt5,1),(-2-i,25),(-2+i,25). ( − 5 − 2 , 1 ) , ( − 2 + 5 , 1 ) , ( − 2 − i , 25 ) , ( − 2 + i , 25 ) .
Comments