Answer to Question #287105 in Algebra for samir seikh

Question #287105

. Prove the following statements (the symbols carry their usual meaning):



(a) 2F1(−n, 1, 1; x) = (1 − x)



n



(b) 2F1(−n, 1, 1; −x) = (1 + x)



n



(c) x 2F1(1, 1, 2; x) = log(1 − x)



(d) x 2F1(1, 1, 2; −x) = log(1 + x)



(e) x 2F1




1
Expert's answer
2022-01-16T07:47:04-0500


Using hypergeometric series identity:


2F1(a,b;b;z)=(1z)a_2F_1(a,b;b;z)=(1-z)^{-a}


(a)

2F1(n,1;1;x)     z=x,anda=n_2F_1(-n,1;1;x)\implies\>z=x,and\>a=-n


2F1(n,1;1;x)=(1x)(n)\therefore_2F_1(-n,1;1;x)=(1-x)^{-(-n)}

=(1x)n=(1-x)^n




(b)

In 2F1(n,1;1;x),z=xanda=n_2F_1(-n,1;1;-x),z=-x\>and \>a=-n



    2F1(n,1;1;x)=[1(x)](n)\implies\>_2F_1(-n,1;1;-x)=[1-(-x)]^{-(-n)}


=(1+x)n=(1+x)^n


(c)

Using hypergeometric series identity;


2F1(1,1;2;z)=In(1+z)z_2F_1(1,1;2;-z)=\frac{In(1+z)}{z}


Then in the statement

(x)2F1(1,1;2;x)(x)_2F_1(1,1;2;x)


x=z     z=xx=-z\implies\>z=-x


2F1(1,1;2;x)=In(1+x)x\therefore\>_2F_1(1,1;2;x)=\frac{In(1+-x)}{x}


(x)2F1(1,1;2;x)=In(1x)\therefore\>(x)_2F_1(1,1;2;x)=In(1-x)



(d)


In the statement


(x)2F1(1,1;2;x)(x)_2F_1(1,1;2;-x)

x=zx=z


2F1(1,1;2;x)=In(1+x)x\therefore\>_2F_1(1,1;2;-x)=\frac{In(1+x)}{x}


(x)2F1(1,1;2;x)=In(1+x)\therefore\>(x)_2F_1(1,1;2;-x)=In(1+x)




(e)

Assuming the question statement is;

x2F1(12,12,32;x2)=x_2F_1(\frac{1}{2},\frac{1}{2},\frac{3}{2};x^2)= arc Sin xx


Using hypergeometric series identity

2F1(12,12;32;z2)=arcSinzz2F_1(\frac{1}{2},\frac{1}{2};\frac{3}{2};z^2)=\frac{arc\>Sin\>z}{z}


Then substituting z=xz=x in the identity

2F1(12,12;32;x2)2F_1(\frac{1}{2},\frac{1}{2};\frac{3}{2};x^2) =arcSinxx=\frac{arc\>Sin\>x}{x}


    (x)2F1(12,12,32,x2)=arcSinx\implies(x)_2F_1(\frac{1}{2},\frac{1}{2},\frac{3}{2},x^2)=arc\>Sin\>x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment