Using hypergeometric series identity:
2F1(a,b;b;z)=(1−z)−a
(a)
2F1(−n,1;1;x)⟹z=x,anda=−n
∴2F1(−n,1;1;x)=(1−x)−(−n)
=(1−x)n
(b)
In 2F1(−n,1;1;−x),z=−xanda=−n
⟹2F1(−n,1;1;−x)=[1−(−x)]−(−n)
=(1+x)n
(c)
Using hypergeometric series identity;
2F1(1,1;2;−z)=zIn(1+z)
Then in the statement
(x)2F1(1,1;2;x)
x=−z⟹z=−x
∴2F1(1,1;2;x)=xIn(1+−x)
∴(x)2F1(1,1;2;x)=In(1−x)
(d)
In the statement
(x)2F1(1,1;2;−x)
x=z
∴2F1(1,1;2;−x)=xIn(1+x)
∴(x)2F1(1,1;2;−x)=In(1+x)
(e)
Assuming the question statement is;
x2F1(21,21,23;x2)= arc Sin x
Using hypergeometric series identity
2F1(21,21;23;z2)=zarcSinz
Then substituting z=x in the identity
2F1(21,21;23;x2) =xarcSinx
⟹(x)2F1(21,21,23,x2)=arcSinx
Comments
Leave a comment