. Prove the following statements (the symbols carry their usual meaning):
(a) 2F1(−n, 1, 1; x) = (1 − x)
n
(b) 2F1(−n, 1, 1; −x) = (1 + x)
n
(c) x 2F1(1, 1, 2; x) = log(1 − x)
(d) x 2F1(1, 1, 2; −x) = log(1 + x)
(e) x 2F1
Using hypergeometric series identity:
"_2F_1(a,b;b;z)=(1-z)^{-a}"
(a)
"_2F_1(-n,1;1;x)\\implies\\>z=x,and\\>a=-n"
"\\therefore_2F_1(-n,1;1;x)=(1-x)^{-(-n)}"
"=(1-x)^n"
(b)
In "_2F_1(-n,1;1;-x),z=-x\\>and \\>a=-n"
"\\implies\\>_2F_1(-n,1;1;-x)=[1-(-x)]^{-(-n)}"
"=(1+x)^n"
(c)
Using hypergeometric series identity;
"_2F_1(1,1;2;-z)=\\frac{In(1+z)}{z}"
Then in the statement
"(x)_2F_1(1,1;2;x)"
"x=-z\\implies\\>z=-x"
"\\therefore\\>_2F_1(1,1;2;x)=\\frac{In(1+-x)}{x}"
"\\therefore\\>(x)_2F_1(1,1;2;x)=In(1-x)"
(d)
In the statement
"(x)_2F_1(1,1;2;-x)"
"x=z"
"\\therefore\\>_2F_1(1,1;2;-x)=\\frac{In(1+x)}{x}"
"\\therefore\\>(x)_2F_1(1,1;2;-x)=In(1+x)"
(e)
Assuming the question statement is;
"x_2F_1(\\frac{1}{2},\\frac{1}{2},\\frac{3}{2};x^2)=" arc Sin "x"
Using hypergeometric series identity
"2F_1(\\frac{1}{2},\\frac{1}{2};\\frac{3}{2};z^2)=\\frac{arc\\>Sin\\>z}{z}"
Then substituting "z=x" in the identity
"2F_1(\\frac{1}{2},\\frac{1}{2};\\frac{3}{2};x^2)" "=\\frac{arc\\>Sin\\>x}{x}"
"\\implies(x)_2F_1(\\frac{1}{2},\\frac{1}{2},\\frac{3}{2},x^2)=arc\\>Sin\\>x"
Comments
Leave a comment