find the value of k for which the following equation has two equal roots.
(k+2)x^2+4k=(4k+2)x
Compute the discriminant of the quadratic ax2+bx+c=0.a x^{2}+b x+c=0.ax2+bx+c=0.
It is:
Δ=b2−4ac=(4k+2)2−4⋅4k(k+2)=16k2+16k+4−16k2−32k=−16k+4\Delta=b^{2}-4 a c=(4 k+2)^{2}-4 \cdot 4 k(k+2)\\=16 k^{2}+16 k+4-16 k^{2}-32 k=-16 k+4Δ=b2−4ac=(4k+2)2−4⋅4k(k+2)=16k2+16k+4−16k2−32k=−16k+4
A quadratic has two equal roots if and only if Δ=0\Delta=0\\Δ=0
−16k+4=0⇒k=416=14-16k+4=0\Rightarrow k=\frac{4}{16}=\frac{1}{4}−16k+4=0⇒k=164=41
Hence, the value of k is 14\frac{1}{4}41 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments