Answer to Question #285504 in Algebra for bookaddict

Question #285504

find the values of k for which the following equations have two equal roots.

(a)4x^2+4(k-2)x+k=0

(b)(k+2)x^2+4k=(4k+2x)

(c)x^2-2x+1=2k(k-2)

(d)(k+1)x^2+kx-2k=0

(e)4x^2-(k-2)x+9=0


1
Expert's answer
2022-01-09T16:59:53-0500

(a)


4x2+4(k2)x+k=04x^2+4(k-2)x+k=0

D=(4(k2))24(4)(k)=0D=(4(k-2))^2-4(4)(k)=0

k24k+4k=0k^2-4k+4-k=0

k25k+4=0k^2-5k+4=0

(k1)(k4)=0(k-1)(k-4)=0

k{1,4}k\in \{1, 4\}

(b)


(k+2)x2+4k=4k+2x(k+2)x^2+4k=4k+2x

k2k\not=-2


(k+2)x22x=0(k+2)x^2-2x=0

x1=0,x2=2k+20,kR,k2x_1=0, x_2=\dfrac{2}{k+2}\not=0, k\in \R, k\not=-2

There is no solution.


kk\in \empty

(c)


x22x+1=2k(k2)x^2-2x+1=2k(k-2)

(x1)2=2k(k2)(x-1)^2=2k(k-2)

2k(k2)=02k(k-2)=0

k1=0,k2=2k_1=0, k_2=2

k{0,2}k\in \{0,2\}

(d)


(k+1)x2+kx2k=0(k+1)x^2+kx-2k=0

k1k\not=-1


D=(k)24(k+1)(2k)=0D=(k)^2-4(k+1)(-2k)=0

k2+8k+8=0k^2+8k+8=0

k2+8k+16=8k^2+8k+16=8

(k+4)2=8(k+4)^2=8

k1=22,k2=22k_1=-2\sqrt{2}, k_2=2\sqrt{2}

k{22,22}k\in \{-2\sqrt{2},2\sqrt{2}\}

(e)


4x2(k2)x+9=04x^2-(k-2)x+9=0

D=((k2))24(4)(9)=0D=(-(k-2))^2-4(4)(9)=0

(k2)2=144(k-2)^2=144

k1=10,k2=14k_1=-10, k_2=14

k{10,14}k\in \{-10,14\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment