Step-1 :
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate.
2 x 1 + 3 x 2 + s 1 = 6 2 x 1 + x 2 + s 2 = 4 2x_1+3x_2+s_1=6\\2x_1+x_2+s_2=4 2 x 1 + 3 x 2 + s 1 = 6 2 x 1 + x 2 + s 2 = 4
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate.
Z ′ − 2 x 1 − 2 x 2 + x 3 = 0 Z'-2x_1-2x_2+x_3=0 Z ′ − 2 x 1 − 2 x 2 + x 3 = 0
2 x 1 + 3 x 2 + s 1 = 6 2 x 1 + x 2 + s 2 = 4 2x_1+3x_2+s_1=6\\2x_1+x_2+s_2=4 2 x 1 + 3 x 2 + s 1 = 6 2 x 1 + x 2 + s 2 = 4
Now represent the new system of constraint equations in the matrix form
[ 1 − 2 − 1 1 0 0 0 2 3 0 1 0 0 2 1 0 0 1 ] [ Z ′ x 1 x 2 x 3 s 1 s 2 ] = [ 0 6 4 ] \begin{bmatrix}
1 & -2&-1&1&0&0 \\
0 & 2&3&0&1&0\\0 & 2&1&0&0&1
\end{bmatrix}\begin{bmatrix}
Z'\\
x_1\\x_2\\x_3\\s_1\\s_2
\end{bmatrix}=\begin{bmatrix}
0 \\
6\\4
\end{bmatrix} ⎣ ⎡ 1 0 0 − 2 2 2 − 1 3 1 1 0 0 0 1 0 0 0 1 ⎦ ⎤ ⎣ ⎡ Z ′ x 1 x 2 x 3 s 1 s 2 ⎦ ⎤ = ⎣ ⎡ 0 6 4 ⎦ ⎤
o r or\\ or [ − 1 − c 0 A ] [ z x ] = [ 0 b ] ≥ 0 \begin{bmatrix}
-1 & -c \\
0 & A
\end{bmatrix}\begin{bmatrix}
z \\
x
\end{bmatrix}=\begin{bmatrix}
0\\
b
\end{bmatrix}\geq0 [ − 1 0 − c A ] [ z x ] = [ 0 b ] ≥ 0
w h e r e e = β 0 , a 3 = β 1 , a 4 = β 2 where e=β_0,a_3=β_1,a_4=β_2 w h eree = β 0 , a 3 = β 1 , a 4 = β 2
S t e p 2 : T h e b a s i s m a t r i x B 1 o f o r d e r ( 2 + 1 ) = 3 c a n b e e x p r e s s e d a s β 1 = [ β 0 β 1 β 2 ] = [ 1 0 0 0 1 0 0 0 1 ] Step\ 2:The\ basis \ matrix\ B_1\ of\ order (2+1)=3 can\ be\ expressed\ as\\ \beta_1=\begin{bmatrix}
\beta_0 & \beta_1&\beta_2 \\
\end{bmatrix}=\begin{bmatrix}
1 & 0&0\\
0& 1&0\\0 & 0&1
\end{bmatrix} St e p 2 : T h e ba s i s ma t r i x B 1 o f or d er ( 2 + 1 ) = 3 c an b e e x p resse d a s β 1 = [ β 0 β 1 β 2 ] = ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤
Iteration=1 : Repeat steps 3 to 5 to get new solution
Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute
c k − z k = M a x { ( c j − z j ) > 0 ; j = 1 , 2 } c_k-z_k=Max\lbrace{(c_j-z_j)>0;j=1,2}\rbrace c k − z k = M a x { ( c j − z j ) > 0 ; j = 1 , 2 }
= M a x { − ( 1 s t r o w o f β 1 − 1 ) ( C o l u m n s a j n o t i n b a s i s ) } =Max\lbrace{-(1^{st}\ row\ of\ \beta_1^{-1})(Columns\ a_j\ not\ in\ basis)}\rbrace = M a x { − ( 1 s t ro w o f β 1 − 1 ) ( C o l u mn s a j n o t in ba s i s ) }
= m a x { − [ 1 0 0 ] [ 2 − 1 1 2 3 0 2 1 0 ] } =max\lbrace-\begin{bmatrix}
1 & 0&0
\end{bmatrix}\begin{bmatrix}
2 & -1& 1 \\
2 & 3& 0\\2 & 1& 0
\end{bmatrix}\rbrace = ma x { − [ 1 0 0 ] ⎣ ⎡ 2 2 2 − 1 3 1 1 0 0 ⎦ ⎤ }
= M a x { − [ − 2 − 1 1 ] } = M a x { [ 2 1 − 1 ] } = 2 ( c o r r e s p n d s t o c 1 − z 1 ) =Max\lbrace-\begin{bmatrix}
-2 & -1 &1
\end{bmatrix}\rbrace\\ =Max\lbrace\begin{bmatrix}
2 & 1 &-1
\end{bmatrix}\rbrace\\ =2 (correspnds\ to\ c_1-z_1) = M a x { − [ − 2 − 1 1 ] } = M a x { [ 2 1 − 1 ] } = 2 ( corres p n d s t o c 1 − z 1 )
Thus, vector x 1 x_1 x 1 is selected to enter into the basis, for k=1
Step-4: To select a basic variable to leave the basis, we compute y k y_k y k for k=1, as follows
y 1 = β 1 − 1 a 1 = [ 1 0 0 0 1 0 0 0 1 ] [ − 2 2 2 ] = [ − 2 2 2 ] a n d X B = [ 0 6 4 ] y_1=\beta_1^{-1}a_1=\begin{bmatrix}
1 & 0&0\\
0& 1&0\\0 & 0&1
\end{bmatrix}\begin{bmatrix}
-2\\
2\\2
\end{bmatrix}=\begin{bmatrix}
-2\\
2\\2
\end{bmatrix}and\ X_B=\begin{bmatrix}
0\\
6\\4
\end{bmatrix} y 1 = β 1 − 1 a 1 = ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ ⎣ ⎡ − 2 2 2 ⎦ ⎤ = ⎣ ⎡ − 2 2 2 ⎦ ⎤ an d X B = ⎣ ⎡ 0 6 4 ⎦ ⎤
Now, calculate the minimum ratio to select the basic variable to leave the basis
x β r y r k = m i n { x β i y i k , y i k > 0 } \frac{x_{\beta r}}{y_{rk}}=min\lbrace\frac{x_{\beta i}}{y_{ik}},y_{ik}\gt0\rbrace\\ y r k x β r = min { y ik x β i , y ik > 0 }
= m i n { 6 2 , 4 2 } = m i n { 3 , 2 } =min\lbrace \frac{6}{2},\frac{4}{2}\rbrace\\=min\lbrace3,2\rbrace = min { 2 6 , 2 4 } = min { 3 , 2 }
= 2 ( c o r r e s p o n d s t o x β 2 y 21 ) =2(corresponds\ to \frac{x_{\beta 2}}{y_{21}} ) = 2 ( corres p o n d s t o y 21 x β 2 )
Thus, vector S 2 S_2 S 2 is selected to leave the basis, for r=2
The table with new entries in column Y 1 Y_1 Y 1 and the minimum ratio
The table solution is now updated by replacing variable S 2 S_2 S 2 with the variable X 1 X_1 X 1 into the basis.
For this we apply the following row operations in the same way as in the simplex method
The improved solution is
Iteration=2 : Repeat steps 3 to 5 to get new solution
Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute
c k − z k = M a x { ( c j − z j ) > 0 ; j = 1 , 2 } c_k-z_k=Max\lbrace{(c_j-z_j)>0;j=1,2}\rbrace c k − z k = M a x { ( c j − z j ) > 0 ; j = 1 , 2 }
= M a x { − ( 1 s t r o w o f β 1 − 1 ) ( C o l u m n s a j n o t i n b a s i s ) } =Max\lbrace{-(1^{st}\ row\ of\ \beta_1^{-1})(Columns\ a_j\ not\ in\ basis)}\rbrace = M a x { − ( 1 s t ro w o f β 1 − 1 ) ( C o l u mn s a j n o t in ba s i s ) }
= m a x { − [ 1 0 1 ] [ 0 − 1 1 0 3 0 1 1 0 ] } =max\lbrace-\begin{bmatrix}
1 & 0&1
\end{bmatrix}\begin{bmatrix}
0 & -1& 1 \\
0 & 3& 0\\1 & 1& 0
\end{bmatrix}\rbrace = ma x { − [ 1 0 1 ] ⎣ ⎡ 0 0 1 − 1 3 1 1 0 0 ⎦ ⎤ }
= M a x { − [ − 1 0 1 ] } = M a x { [ − 1 0 − 1 ] } =Max\lbrace-\begin{bmatrix}
-1 & 0 &1
\end{bmatrix}\rbrace\\ =Max\lbrace\begin{bmatrix}
-1 & 0 &-1
\end{bmatrix}\rbrace = M a x { − [ − 1 0 1 ] } = M a x { [ − 1 0 − 1 ] }
S i n c e a l l Z j − C j ≥ 0 Since\ all\ Z_j-C
_j≥0 S in ce a ll Z j − C j ≥ 0
H e n c e , o p t i m a l s o l u t i o n i s a r r i v e d w i t h v a l u e o f v a r i a b l e s a s : x 1 = 2 , x 2 = 0 , x 1 2 = 0 Hence, optimal\ solution\ is\ arrived\ with\ value\ of\ variables\ as :\\
x_1=2,x_2=0,x_1^{2}=0 He n ce , o pt ima l so l u t i o n i s a rr i v e d w i t h v a l u e o f v a r iab l es a s : x 1 = 2 , x 2 = 0 , x 1 2 = 0
M a x Z = 4 Max Z=4 M a x Z = 4
Comments