If a,b and c are the roots of the equation x3−6x2+10x−6=0, let us find the values of a2+b2+c2 and a1+b1+c1.
According to Vieta's formulas, a+b+c=6, ab+ac+bc=10, abc=6.
Then we get
a2+b2+c2=(a+b+c)2−2(ab+bc+ac)=62−2⋅10=36−20=16
and
a1+b1+c1=abcbc+ac+ab=610=35.
Comments
Leave a comment