Answer to Question #265456 in Algebra for Pankaj

Question #265456

If a, b and c are the roots of the equation x^3 -6x^2 +10x-6 =0 , find the values of a^2 +b^2 +c^2 and 1/a + 1/b + 1/c.


1
Expert's answer
2021-11-16T11:08:22-0500

If a,ba, b and cc are the roots of the equation x36x2+10x6=0,x^3 -6x^2 +10x-6 =0 , let us find the values of a2+b2+c2a^2 +b^2 +c^2 and 1a+1b+1c.\frac{1}a + \frac{1}b + \frac{1}c.

According to Vieta's formulas, a+b+c=6, ab+ac+bc=10, abc=6.a+b+c=6,\ ab+ac+bc=10,\ abc=6.

Then we get

a2+b2+c2=(a+b+c)22(ab+bc+ac)=62210=3620=16a^2 +b^2 +c^2=(a+b+c)^2-2(ab+bc+ac)=6^2-2\cdot 10=36-20=16

and

1a+1b+1c=bc+ac+ababc=106=53.\frac{1}a + \frac{1}b + \frac{1}c=\frac{bc+ac+ab}{abc}=\frac{10}{6}=\frac{5}3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment