Answer to Question #263288 in Algebra for Amana Ateba

Question #263288

Let z, w ∈ C. Show |z + w| =


p


|z|


2 + 2Re(zw) + |w|


2 =


p


|z|


2 + 2|z||w| cos(θz − θw) + |w|


2 and


|z + w| = (|z| + |w|)


s


1 −






2 sin([θz−θw]/2)


|z|/|w|+



|w|/|z|


2


, if z 6= 0 and w 6= 0.

1
Expert's answer
2021-11-10T14:20:24-0500

Let z, w ∈ C. Show

"|z + w| =\\sqrt{|z|^2 + 2Re(z\\overline{w}) + |w|^2} =\\sqrt{|z|^2 + 2|z||w| cos(\u03b8_z \u2212 \u03b8_w) + |w|^2}"


if "z \\neq 0 ,w \\neq 0" .


"|z + w|^2=(z+w)(\\overline{z+w})=(z+w)(\\overline{z}+\\overline{w})=z\\overline{z}+w\\overline{w}+z\\overline{w}+\\overline{z}w="

"=|z|^2+|w|^2+z\\overline{w}+\\overline{z}w=|z|^2+|w|^2+2Re(z\\overline{w})"


"z\\overline{w}=|z||w|(cos\\theta_z+isin \\theta_z)(cos\\theta_w-isin \\theta_w)"

"Re(z\\overline{w})=cos\\theta_z cos\\theta_w+sin\\theta_z sin\\theta_w=|z||w| cos(\u03b8_z \u2212 \u03b8_w)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS