Answer to Question #263288 in Algebra for Amana Ateba

Question #263288

Let z, w ∈ C. Show |z + w| =


p


|z|


2 + 2Re(zw) + |w|


2 =


p


|z|


2 + 2|z||w| cos(θz − θw) + |w|


2 and


|z + w| = (|z| + |w|)


s


1 −






2 sin([θz−θw]/2)


|z|/|w|+



|w|/|z|


2


, if z 6= 0 and w 6= 0.

1
Expert's answer
2021-11-10T14:20:24-0500

Let z, w ∈ C. Show

z+w=z2+2Re(zw)+w2=z2+2zwcos(θzθw)+w2|z + w| =\sqrt{|z|^2 + 2Re(z\overline{w}) + |w|^2} =\sqrt{|z|^2 + 2|z||w| cos(θ_z − θ_w) + |w|^2}


if z0,w0z \neq 0 ,w \neq 0 .


z+w2=(z+w)(z+w)=(z+w)(z+w)=zz+ww+zw+zw=|z + w|^2=(z+w)(\overline{z+w})=(z+w)(\overline{z}+\overline{w})=z\overline{z}+w\overline{w}+z\overline{w}+\overline{z}w=

=z2+w2+zw+zw=z2+w2+2Re(zw)=|z|^2+|w|^2+z\overline{w}+\overline{z}w=|z|^2+|w|^2+2Re(z\overline{w})


zw=zw(cosθz+isinθz)(cosθwisinθw)z\overline{w}=|z||w|(cos\theta_z+isin \theta_z)(cos\theta_w-isin \theta_w)

Re(zw)=cosθzcosθw+sinθzsinθw=zwcos(θzθw)Re(z\overline{w})=cos\theta_z cos\theta_w+sin\theta_z sin\theta_w=|z||w| cos(θ_z − θ_w)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment