Let z, w ∈ C. Show
∣z+w∣=∣z∣2+2Re(zw)+∣w∣2=∣z∣2+2∣z∣∣w∣cos(θz−θw)+∣w∣2
if z=0,w=0 .
∣z+w∣2=(z+w)(z+w)=(z+w)(z+w)=zz+ww+zw+zw=
=∣z∣2+∣w∣2+zw+zw=∣z∣2+∣w∣2+2Re(zw)
zw=∣z∣∣w∣(cosθz+isinθz)(cosθw−isinθw)
Re(zw)=cosθzcosθw+sinθzsinθw=∣z∣∣w∣cos(θz−θw)
Comments
Leave a comment