Let z, w ∈ C. Show
∣ z + w ∣ = ∣ z ∣ 2 + 2 R e ( z w ‾ ) + ∣ w ∣ 2 = ∣ z ∣ 2 + 2 ∣ z ∣ ∣ w ∣ c o s ( θ z − θ w ) + ∣ w ∣ 2 |z + w| =\sqrt{|z|^2 + 2Re(z\overline{w}) + |w|^2} =\sqrt{|z|^2 + 2|z||w| cos(θ_z − θ_w) + |w|^2} ∣ z + w ∣ = ∣ z ∣ 2 + 2 R e ( z w ) + ∣ w ∣ 2 = ∣ z ∣ 2 + 2∣ z ∣∣ w ∣ cos ( θ z − θ w ) + ∣ w ∣ 2
if z ≠ 0 , w ≠ 0 z \neq 0 ,w \neq 0 z = 0 , w = 0 .
∣ z + w ∣ 2 = ( z + w ) ( z + w ‾ ) = ( z + w ) ( z ‾ + w ‾ ) = z z ‾ + w w ‾ + z w ‾ + z ‾ w = |z + w|^2=(z+w)(\overline{z+w})=(z+w)(\overline{z}+\overline{w})=z\overline{z}+w\overline{w}+z\overline{w}+\overline{z}w= ∣ z + w ∣ 2 = ( z + w ) ( z + w ) = ( z + w ) ( z + w ) = z z + w w + z w + z w =
= ∣ z ∣ 2 + ∣ w ∣ 2 + z w ‾ + z ‾ w = ∣ z ∣ 2 + ∣ w ∣ 2 + 2 R e ( z w ‾ ) =|z|^2+|w|^2+z\overline{w}+\overline{z}w=|z|^2+|w|^2+2Re(z\overline{w}) = ∣ z ∣ 2 + ∣ w ∣ 2 + z w + z w = ∣ z ∣ 2 + ∣ w ∣ 2 + 2 R e ( z w )
z w ‾ = ∣ z ∣ ∣ w ∣ ( c o s θ z + i s i n θ z ) ( c o s θ w − i s i n θ w ) z\overline{w}=|z||w|(cos\theta_z+isin \theta_z)(cos\theta_w-isin \theta_w) z w = ∣ z ∣∣ w ∣ ( cos θ z + i s in θ z ) ( cos θ w − i s in θ w )
R e ( z w ‾ ) = c o s θ z c o s θ w + s i n θ z s i n θ w = ∣ z ∣ ∣ w ∣ c o s ( θ z − θ w ) Re(z\overline{w})=cos\theta_z cos\theta_w+sin\theta_z sin\theta_w=|z||w| cos(θ_z − θ_w) R e ( z w ) = cos θ z cos θ w + s in θ z s in θ w = ∣ z ∣∣ w ∣ cos ( θ z − θ w )
Comments