Let z, w ∈ C. Show |z + w| =
p
|z|
2 + 2Re(zw) + |w|
2 =
p
|z|
2 + 2|z||w| cos(θz − θw) + |w|
2 and
|z + w| = (|z| + |w|)
s
1 −
√
2 sin([θz−θw]/2)
|z|/|w|+
√
|w|/|z|
2
, if z 6= 0 and w 6= 0.
Let z, w ∈ C. Show
"|z + w| =\\sqrt{|z|^2 + 2Re(z\\overline{w}) + |w|^2} =\\sqrt{|z|^2 + 2|z||w| cos(\u03b8_z \u2212 \u03b8_w) + |w|^2}"
if "z \\neq 0 ,w \\neq 0" .
"|z + w|^2=(z+w)(\\overline{z+w})=(z+w)(\\overline{z}+\\overline{w})=z\\overline{z}+w\\overline{w}+z\\overline{w}+\\overline{z}w="
"=|z|^2+|w|^2+z\\overline{w}+\\overline{z}w=|z|^2+|w|^2+2Re(z\\overline{w})"
"z\\overline{w}=|z||w|(cos\\theta_z+isin \\theta_z)(cos\\theta_w-isin \\theta_w)"
"Re(z\\overline{w})=cos\\theta_z cos\\theta_w+sin\\theta_z sin\\theta_w=|z||w| cos(\u03b8_z \u2212 \u03b8_w)"
Comments
Leave a comment