Simplify the sum Σ from r=0 to 2n+1 of [3/(r+1)(r+2)]
Decomposing into two fractions
"\\frac{3}{(r+1)(r+2)}=\\frac{A}{r+1}+\\frac{B}{r+2}"
Multiplying both sides by (r+1)(r+2)
"3=A(r+2)+B(r+1)"
Let "r=-2"
"\\implies3=B(-2+1)=-B\\implies \\>B=-3"
Let "r=-1"
"\\implies3=A(-1+2)\\implies\\>A=3"
"\\therefore\\frac{3}{(r+1)(r+2)}=\\frac{3}{r+1}-\\frac{3}{r+2}"
Writing the first three and the last there terms
"\\displaystyle\\sum_{r=0}^{2n+1}(\\frac {3}{r+1}-\\frac{3}{r+2})=({3-\\frac {3}{2}})+(\\frac{3}{2}-\\frac{3}{3})+(\\frac{3}{3}-\\frac{3}{4})+...\\\\\\>+(\\frac{3}{2n}-\\>\\>\\frac{3}{2n+1})+(\\frac{3}{2n+1}-\\frac{3}{2n+2})+(\\frac{3}{2n+2}-\\frac{3}{2n+3})"
All fraction cancels apart from 1st and last
"\\implies" Summation "=3-\\frac{3}{2n+3}=\\frac{6n+9-3}{2n+3}"
"\\therefore" "\\displaystyle\\sum_{r=0}^{2n+1}" "\\frac{3}{(r+1)(r+2)}=\\frac{6n+6}{2n+3}=\\frac{6(n+1)}{2n+3}"
Comments
Leave a comment