Find the domain and range of the following rational function.Use any notation.
f(x)=3/x-1 f(x)=2x/x-4 f(x)=x+3/5x-5 f(x)=2x+x/2x f(x)=(x2+4x+3)/x²-9
"f(x)=\\frac{3}{x-1}"
To find domain we set, Denominator=0
"x-1=0\\\\x=1"
When x=1 the function is undefined,
"\\space f(x)=\\frac{2x}{x-4}"
To find domain we set, Denominator=0
"\\implies x-4=0\\\\\\implies x=4"
When x=4 the function is undefined,
"\\therefore" domain of "f(x)={x:x \\ne 4}"
To find range,
"Y=\\frac{2x}{x-4}\\\\"
"\\implies \\frac{1}{Y}=\\frac{x-4}{2x}\\\\"
"\\implies \\frac{1}{Y}=\\frac{1}{2}-\\frac{2}{x}"
"\\implies \\frac{2}{x}=\\frac{1}{2}-\\frac{1}{Y}"
"\\implies \\frac{n}{2}=\\frac{2Y}{Y-2}"
"\\implies n=\\frac{4Y}{Y-2}"
When, Y=2 the function is undefined
"\\therefore" Range"=\\{Y:Y\\ne 2\\}"
"f(x)=\\frac{x+3}{5n-5}"
Denominator"=0\\implies5n-5=0\\\\\\implies n=1\\\\\\therefore Domain=\\{x|x\\ne 1\\}"
Now,
"Y=\\frac{x+3}{5x-5}\\\\\\implies5xY-5Y=x+3\\\\\\implies x(5Y-1)=3+5Y\\\\n=\\frac{3+5Y}{5Y-1}"
Set, "5Y-1=0\\implies Y=\\frac{1}{5}"
"\\therefore" Range of "f(x)=\\{Y|Y\\ne \\frac{1}{5}\\}"
"f(x)=\\frac{2x+2}{2x}"
To find domain we set, Denominator=0
"2x=0\\\\x=0"
When x=0 the function is undefined,
"f(x)=\\frac{2x+4x+3}{2x^2-9}"
To find domain we set, Denominator=0
"x^2-9=0\\\\x^2=9\\\\x=3"
When x=3 the function is undefined,
Comments
Leave a comment