Answer to Question #259253 in Algebra for bri

Question #259253

a)Solve the following:

i) 2x/2-16=1/32       ii) log8(x-2)+log8(x)=1

b) The demand curve for a swivel chair is given by p=4000(3-q) dollars per swivel chair, where p is the price and q is the quantity, in thousands of swivel chair, demanded at that price. What quantity will be demanded if the price per swivel chair is $256.60?

 


1
Expert's answer
2021-11-02T16:55:35-0400

(a)


(i)

2x216=1322 ^{\frac {x} {2} -16} = \frac {1} {32} \\


2x216=1252 ^{\frac {x} {2} -16} = \frac {1} {2^5} \\


2x216=25Equating the indices;x216=5Grouping like terms (i.e adding 16 to both sides)x216+16=5+16x2=11Multiplying both sides by 2x2×2=11×2x=222 ^{\frac {x} {2} -16} = 2^ {-5} \\ Equating \ the \ indices; \\ \frac{x} {2} - 16 = -5 \\ Grouping \ like \ terms \ (i.e \ adding \ 16 \ to \ both \ sides) \\ \frac{x} {2} - 16 + 16 = -5 + 16 \\ \frac{x} {2} = 11 \\ Multiplying \ both \ sides \ by \ 2 \\ \frac{x} {2} \times 2 = 11 \times 2 \\ x = 22


(ii)

log8(x2)+log8(x)=1According to the rule of logarithm,logA+logB=log(A×B)log8(x2)+log8(x)=1log8x(x2)=1log8x(x2)=log88Equating the logarithm,x(x2)=8x22x=8x22x8=0Solving using the quadratic formula;x=b±b24ac2aa=1,b=2,c=8x=(2)±(2)24(1)(8)2×1x=2±4+322x=2±362x=2±62x=2+62 or x=262x=82 or x=42x=4 or x=2\log_8 (x -2) + \log_8 (x) = 1 \\ According \ to \ the \ rule \ of \ logarithm, \\ \log A + \log B = \log (A \times B) \\ \therefore \log_8 (x -2) + \log_8 (x) = 1 \\ \log_8 x(x -2) = 1 \\ \log_8 x(x -2) = \log_8 8 \\ Equating\ the \ logarithm, \\ x(x -2) = 8 \\ x^2 - 2x = 8 \\ x^2 - 2x - 8 = 0 \\ Solving \ using \ the \ quadratic \ formula; \\ x = \frac {-b \pm \sqrt {b^2 - 4ac}} {2a} \\ a = 1, b = -2, c = -8 \\ x = \frac {-(-2) \pm \sqrt {(-2)^2 - 4(1)(-8)}} {2 \times 1} \\ x = \frac {2 \pm \sqrt {4 + 32}} {2} \\ x = \frac {2 \pm \sqrt {36}} {2} \\ x = \frac {2 \pm 6} {2} \\ x = \frac {2 + 6} {2} \ or \ x = \frac {2 - 6} {2} \\ x = \frac {8} {2} \ or \ x = \frac {-4} {2} \\ x = 4 \ or \ x = -2

since logarithm of negative number is not possible, (i.e., xNx \isin \mathbb{N})

x=4\therefore x = 4


(b)

p=4000(3q)p4000=3qp = 4000(3^{-q}) \\ \frac {p} {4000} = 3^{-q}


Taking the logarithm to base 3 of both sides;

log3p4000=log33qlog3p4000=qlog33since log33=1log3p4000=qSo,q=log3p4000\log_3 \frac {p} {4000} = \log_3 3^{-q} \\ \log_3 \frac {p} {4000} = -q \log_3 3 \\ since \ \log_3 3 =1 \\ \log_3 \frac {p} {4000} = -q \\ So, \\ q = - \log_3 \frac {p} {4000} \\ \therefore

The quantity that will be demanded if the price per swivel chair is $256.60 is calculated by:


q=log3256.604000q = - \log_3 \frac {256.60} {4000}


changing logarithm of base three to base ten;

logab=logc(b)logc(a)\log_a b = \frac {\log_c (b)} {\log_c (a)}


q=log3256.604000=log10256.604000log103q = - \log_3 \frac {256.60} {4000} = - \frac {\log_{10} \frac {256.60} {4000}} {\log_{10} 3}


q=(1.1928)0.4771q = - \frac {(-1.1928)} {0.4771}


q=2.5001q2.5q = 2.5001 \\ q \approx 2.5


Therefore, 2.5 thousand swivel chairs will be demanded with the price of $256.60


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment