(a)
(i)
2 x 2 − 16 = 1 32 2 ^{\frac {x} {2} -16} = \frac {1} {32} \\ 2 2 x − 16 = 32 1
2 x 2 − 16 = 1 2 5 2 ^{\frac {x} {2} -16} = \frac {1} {2^5} \\ 2 2 x − 16 = 2 5 1
2 x 2 − 16 = 2 − 5 E q u a t i n g t h e i n d i c e s ; x 2 − 16 = − 5 G r o u p i n g l i k e t e r m s ( i . e a d d i n g 16 t o b o t h s i d e s ) x 2 − 16 + 16 = − 5 + 16 x 2 = 11 M u l t i p l y i n g b o t h s i d e s b y 2 x 2 × 2 = 11 × 2 x = 22 2 ^{\frac {x} {2} -16} = 2^ {-5} \\
Equating \ the \ indices; \\
\frac{x} {2} - 16 = -5 \\
Grouping \ like \ terms \ (i.e \ adding \ 16 \ to \ both \ sides) \\
\frac{x} {2} - 16 + 16 = -5 + 16 \\
\frac{x} {2} = 11 \\
Multiplying \ both \ sides \ by \ 2 \\
\frac{x} {2} \times 2 = 11 \times 2 \\
x = 22 2 2 x − 16 = 2 − 5 Eq u a t in g t h e in d i ces ; 2 x − 16 = − 5 G ro u p in g l ik e t er m s ( i . e a dd in g 16 t o b o t h s i d es ) 2 x − 16 + 16 = − 5 + 16 2 x = 11 M u lt i pl y in g b o t h s i d es b y 2 2 x × 2 = 11 × 2 x = 22
(ii)
log 8 ( x − 2 ) + log 8 ( x ) = 1 A c c o r d i n g t o t h e r u l e o f l o g a r i t h m , log A + log B = log ( A × B ) ∴ log 8 ( x − 2 ) + log 8 ( x ) = 1 log 8 x ( x − 2 ) = 1 log 8 x ( x − 2 ) = log 8 8 E q u a t i n g t h e l o g a r i t h m , x ( x − 2 ) = 8 x 2 − 2 x = 8 x 2 − 2 x − 8 = 0 S o l v i n g u s i n g t h e q u a d r a t i c f o r m u l a ; x = − b ± b 2 − 4 a c 2 a a = 1 , b = − 2 , c = − 8 x = − ( − 2 ) ± ( − 2 ) 2 − 4 ( 1 ) ( − 8 ) 2 × 1 x = 2 ± 4 + 32 2 x = 2 ± 36 2 x = 2 ± 6 2 x = 2 + 6 2 o r x = 2 − 6 2 x = 8 2 o r x = − 4 2 x = 4 o r x = − 2 \log_8 (x -2) + \log_8 (x) = 1 \\
According \ to \ the \ rule \ of \ logarithm, \\
\log A + \log B = \log (A \times B) \\
\therefore \log_8 (x -2) + \log_8 (x) = 1 \\ \log_8 x(x -2) = 1 \\
\log_8 x(x -2) = \log_8 8 \\
Equating\ the \ logarithm, \\
x(x -2) = 8 \\
x^2 - 2x = 8 \\
x^2 - 2x - 8 = 0 \\
Solving \ using \ the \ quadratic \ formula; \\
x = \frac {-b \pm \sqrt {b^2 - 4ac}} {2a} \\
a = 1, b = -2, c = -8 \\
x = \frac {-(-2) \pm \sqrt {(-2)^2 - 4(1)(-8)}} {2 \times 1} \\
x = \frac {2 \pm \sqrt {4 + 32}} {2} \\
x = \frac {2 \pm \sqrt {36}} {2} \\
x = \frac {2 \pm 6} {2} \\
x = \frac {2 + 6} {2} \ or \ x = \frac {2 - 6} {2} \\
x = \frac {8} {2} \ or \ x = \frac {-4} {2} \\
x = 4 \ or \ x = -2 log 8 ( x − 2 ) + log 8 ( x ) = 1 A ccor d in g t o t h e r u l e o f l o g a r i t hm , log A + log B = log ( A × B ) ∴ log 8 ( x − 2 ) + log 8 ( x ) = 1 log 8 x ( x − 2 ) = 1 log 8 x ( x − 2 ) = log 8 8 Eq u a t in g t h e l o g a r i t hm , x ( x − 2 ) = 8 x 2 − 2 x = 8 x 2 − 2 x − 8 = 0 S o l v in g u s in g t h e q u a d r a t i c f or m u l a ; x = 2 a − b ± b 2 − 4 a c a = 1 , b = − 2 , c = − 8 x = 2 × 1 − ( − 2 ) ± ( − 2 ) 2 − 4 ( 1 ) ( − 8 ) x = 2 2 ± 4 + 32 x = 2 2 ± 36 x = 2 2 ± 6 x = 2 2 + 6 or x = 2 2 − 6 x = 2 8 or x = 2 − 4 x = 4 or x = − 2
since logarithm of negative number is not possible, (i.e., x ∈ N x \isin \mathbb{N} x ∈ N )
∴ x = 4 \therefore x = 4 ∴ x = 4
(b)
p = 4000 ( 3 − q ) p 4000 = 3 − q p = 4000(3^{-q}) \\
\frac {p} {4000} = 3^{-q} p = 4000 ( 3 − q ) 4000 p = 3 − q
Taking the logarithm to base 3 of both sides;
log 3 p 4000 = log 3 3 − q log 3 p 4000 = − q log 3 3 s i n c e log 3 3 = 1 log 3 p 4000 = − q S o , q = − log 3 p 4000 ∴ \log_3 \frac {p} {4000} = \log_3 3^{-q} \\
\log_3 \frac {p} {4000} = -q \log_3 3 \\
since \ \log_3 3 =1 \\
\log_3 \frac {p} {4000} = -q \\
So, \\
q = - \log_3 \frac {p} {4000} \\
\therefore log 3 4000 p = log 3 3 − q log 3 4000 p = − q log 3 3 s in ce log 3 3 = 1 log 3 4000 p = − q S o , q = − log 3 4000 p ∴
The quantity that will be demanded if the price per swivel chair is $256.60 is calculated by:
q = − log 3 256.60 4000 q = - \log_3 \frac {256.60} {4000} q = − log 3 4000 256.60
changing logarithm of base three to base ten;
log a b = log c ( b ) log c ( a ) \log_a b = \frac {\log_c (b)} {\log_c (a)} log a b = l o g c ( a ) l o g c ( b )
q = − log 3 256.60 4000 = − log 10 256.60 4000 log 10 3 q = - \log_3 \frac {256.60} {4000} = - \frac {\log_{10} \frac {256.60} {4000}} {\log_{10} 3} q = − log 3 4000 256.60 = − l o g 10 3 l o g 10 4000 256.60
q = − ( − 1.1928 ) 0.4771 q = - \frac {(-1.1928)} {0.4771} q = − 0.4771 ( − 1.1928 )
q = 2.5001 q ≈ 2.5 q = 2.5001 \\
q \approx 2.5 q = 2.5001 q ≈ 2.5
Therefore, 2.5 thousand swivel chairs will be demanded with the price of $256.60
Comments
Leave a comment