Using Eulerβs formular obtain trigonometric formulars for cos(π1 + π2) and sin(π1 + π2).
Formulas;
"cos (\\theta_1+\\theta_2) and \\space sin(\\theta_1+\\theta_2)"
"e^{i(\\theta_1+\\theta_2)}=e^{i\\theta_1+i\\theta_2}=e^{i\\theta_1}.e^{i\\theta_2}"
"cos(\\theta_1+\\theta_2)+isin(\\theta_1+\\theta_2)=(cos\\theta_1+isin\\theta_1)(cos\\theta_2+isin\\theta_2)"
"=cos\\theta_1cos\\theta_2-sin\\theta_1sin\\theta_2+(sin\\theta_1cos\\theta_2+cos\\theta_1sin\\theta_2)i"
Equate real and imaginary parts to get that;
"cos(\\theta_1+\\theta_2)=cos\\theta_1cos\\theta_2-sin\\theta_1sin\\theta_2"
"sin(\\theta_1+\\theta_2)=sin\\theta_1cos\\theta_2+cos\\theta_1sin\\theta_2"
Comments
Leave a comment