Answer to Question #257369 in Algebra for saduni

Question #257369

Using Euler’s formular obtain trigonometric formulars for cos(𝜃1 + 𝜃2) and sin(𝜃1 + 𝜃2).


1
Expert's answer
2021-11-05T11:13:10-0400

Formulas;

cos(θ1+θ2)and sin(θ1+θ2)cos (\theta_1+\theta_2) and \space sin(\theta_1+\theta_2)

ei(θ1+θ2)=eiθ1+iθ2=eiθ1.eiθ2e^{i(\theta_1+\theta_2)}=e^{i\theta_1+i\theta_2}=e^{i\theta_1}.e^{i\theta_2}

cos(θ1+θ2)+isin(θ1+θ2)=(cosθ1+isinθ1)(cosθ2+isinθ2)cos(\theta_1+\theta_2)+isin(\theta_1+\theta_2)=(cos\theta_1+isin\theta_1)(cos\theta_2+isin\theta_2)

=cosθ1cosθ2sinθ1sinθ2+(sinθ1cosθ2+cosθ1sinθ2)i=cos\theta_1cos\theta_2-sin\theta_1sin\theta_2+(sin\theta_1cos\theta_2+cos\theta_1sin\theta_2)i

Equate real and imaginary parts to get that;

cos(θ1+θ2)=cosθ1cosθ2sinθ1sinθ2cos(\theta_1+\theta_2)=cos\theta_1cos\theta_2-sin\theta_1sin\theta_2

sin(θ1+θ2)=sinθ1cosθ2+cosθ1sinθ2sin(\theta_1+\theta_2)=sin\theta_1cos\theta_2+cos\theta_1sin\theta_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment