"1)" "When\\, (x-1) =0\\,,x=1\\,f(x)"
Is not defined
Domain is: x<1 or x>1
"If \\,y=\\frac{3}{x-1}"
Then "\\,x=\\frac{3+y}{y}" , y cannot be zero
Range is: f(x)<0 or f(x)>0
2) For x-4=0, x=4, and f(x) cannot be defined
Domain is: x<4 or x>4
Let "y= \\frac{2x}{x-4}\\>\\implies x=\\frac{4y}{y-2}"
y-2, cannot be zero, Therefore y cannot be 2
Range is: f(x)<2 or f(x)>2
3) For, 5x-5=0, implying that x=1, f(x) cannot be defined
Domain is: x<1 or x>1
Let "y=\\frac{x+3}{5x-5}\\; \\implies x=\\frac{5y+3}{5y-1}"
(5y-1), cannot be zero, Therefore, y, cannot be "\\frac{1}{5}"
Range is: "f(x)<\\frac{1}{5} \\>or\\>f(x)>\\frac{1}{5}"
4) 2x cannot be zero
Domain is: x<0 or x>0
Let "y=\\frac{2+x)}{2x}\\> \\implies x=\\frac{2}{2y-1}\\>"
(2y-1), cannot be zero, therefore y cannot be ½
Range is: f(x)<½ or f(x)>½
5) For x²-9=0, x=3 or -3 and f(x) cannot be defined at those points.
Domain is: x<-3 or -3<x<3 or x>3
Let "y=\\frac{x^2+4x+3}{x\u00b2-9}"
"x=\\frac{-4^+_-\\sqrt{\\smash[b]{16-4(1-y)(3+9y)}}}{2(1-y)}"
(1-y) cannot be zero, therefore y cannot be 1
Discriminant cannot be negative, therefore y cannot be greater than ⅓
Range is: f(x)<⅓ or ⅓<f(x)<1 or f(x)>1
Comments
Leave a comment