1) f(x) = x+12
Here x+1 = 0 // otherwise function will not be defined
So x = - 1
Domain (−∞,−1) ⋃ (−1,∞)
Range (−∞,0)⋃(0,∞)
2) f(x) = x+33x
Here x+3 = 0 // otherwise function will not be defined
So x = -3
Domain (−∞,−3)⋃(−3,∞)
f(x) = x+33x+9−9 = x+33(x+3)−9 = 3 - x+39 ----------------------- (1)
From equation (1) we can understand the value will never reach 3.
So Range (−∞,3)⋃(3,∞)
3) f(x) = x−73−x
Here x-7 = 0 // otherwise function will not be defined
So x = 7
Domain (−∞,7)⋃(7,∞)
f(x) = x−7−(x−3) = (x−7)−(x−3−4+4) =(x−7)−(x−7+4) = -1 +(x−7)−4
Range (−∞,−1)⋃(−1,∞)
4) f(x) = x2+x
Here x = 0
Domain (−∞,0)⋃(0,∞)
f(x) = x2+x = x2 + 1
Range (−∞,1)⋃(1,∞)
5) f(x) = x2−1x+1
Here x2 - 1 = 0
So x =1 and x =−1
Domain (−∞,−1)⋃(−1,1)⋃(1,∞)
Range (−∞,0)⋃(0,∞)
Comments