If 𝑓(𝑥)=1𝑥, show that 𝑓(𝑎)−𝑓(𝑏)=𝑓(𝑎𝑏/𝑏−𝑎).
Solution:
Given f(x)=1xf(x)=\dfrac1xf(x)=x1
LHS=f(a)−f(b)=1a−1b=b−aabLHS=f(a)-f(b) \\=\dfrac1a-\dfrac1b \\=\dfrac{b-a}{ab}LHS=f(a)−f(b)=a1−b1=abb−a
RHS=f(abb−a)=1abb−a=b−aabRHS=f(\dfrac{ab}{b-a}) \\=\dfrac{1}{\dfrac{ab}{b-a}} \\=\dfrac{b-a}{ab}RHS=f(b−aab)=b−aab1=abb−a
So, LHS=RHS
Hence, proved.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments