z3+2z2+az+b=0(1+i)3+2(1+i)2+a(1+i)+b=01+i3+3i(1+i)+2(1+i2+zi)+ai+a+b=0
1−i+3i−3+2−2+4i+ai+a+b=0−2+a+b+6i+ai=0
−2+a+b+i(a+6)=0 (1)
therefore a +6=0
a=-6
now put this in equation 1
b=8
z3+2z2+az+b=0
now putting value of a and b
z3+2z2−6z+8=0
now lets check if -4 is a root of the equation put z=-4
(−4)3+2(−4)2−6(−4)+8=0−64+32+24+8=00=0
- hence z=−4 is also a root of the equation.
(and 2,3 ,4 are incorrect)
Comments
Leave a comment