Answer to Question #247365 in Algebra for M.l

Question #247365

14 pairwise different positive integers are written on the board. Their mean value is equal to 19. Let M be the largest of these numbers. Find the smallest possible value of M.


1
Expert's answer
2021-10-11T03:01:59-0400

given

mean value of these integers=19

total number of integers=14

mean value=sum of numbers÷\div total number of integers

19=sum of numbers÷\div 14

sum of numbers=19×2419\times 24

As we sum in A.P

sn=n2[2a+(n1)d]n=14sn=19×14d=1 (unique difference)s_n=\frac{n}{2}[2a+(n-1)d]\\n=14\\s_n=19\times 14\\d=1\space (unique \space difference)

19×14=142[2a+(141)1]19=12[2a+13]38=2a+132a=25a=12.5 issmallestpossiblevalueofM19\times14=\frac{14}{2}[2a+(14-1)1]\\19=\frac{1}{2}[2a+13]\\38=2a+13\\2a=25\\a=12.5 \ is smallest possible value of M

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment