What is the smallest value of 9(a^2) + (b^2) +16(c^2) given that 3a-b+4c=16 and
(4/a) - (12/b) +(3/c) = 0
Given that: "3a-b+4c=16\\ldots(1)"
Also, "\\frac{4}{a} - \\frac{12}{b} +\\frac{3}{c} = 0"
"\\Rightarrow \\frac{4bc-12ac+3ab}{abc}=0\\\\\n\\Rightarrow 4bc-12ac+3ab=0\\ldots(2)"
Squaring equation "(1)," we get:
"9a^2+b^2+16c^2+2(-3ab-4bc+12ac)=0\\\\ \n\\Rightarrow 9a^2+b^2+16c^2-2(3ab+4bc-12ac)=0\\\\\n\\Rightarrow 9a^2+b^2+16c^2=0 \\ [From \\ (2)]"
Comments
Leave a comment