What is the smallest value of 9(a^2) + (b^2) +16(c^2) given that 3a-b+4c=16 and
(4/a) - (12/b) +(3/c) = 0
Given that: 3a−b+4c=16…(1)3a-b+4c=16\ldots(1)3a−b+4c=16…(1)
Also, 4a−12b+3c=0\frac{4}{a} - \frac{12}{b} +\frac{3}{c} = 0a4−b12+c3=0
⇒4bc−12ac+3ababc=0⇒4bc−12ac+3ab=0…(2)\Rightarrow \frac{4bc-12ac+3ab}{abc}=0\\ \Rightarrow 4bc-12ac+3ab=0\ldots(2)⇒abc4bc−12ac+3ab=0⇒4bc−12ac+3ab=0…(2)
Squaring equation (1),(1),(1), we get:
9a2+b2+16c2+2(−3ab−4bc+12ac)=0⇒9a2+b2+16c2−2(3ab+4bc−12ac)=0⇒9a2+b2+16c2=0 [From (2)]9a^2+b^2+16c^2+2(-3ab-4bc+12ac)=0\\ \Rightarrow 9a^2+b^2+16c^2-2(3ab+4bc-12ac)=0\\ \Rightarrow 9a^2+b^2+16c^2=0 \ [From \ (2)]9a2+b2+16c2+2(−3ab−4bc+12ac)=0⇒9a2+b2+16c2−2(3ab+4bc−12ac)=0⇒9a2+b2+16c2=0 [From (2)]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment