Answer to Question #243512 in Algebra for Trixie Saavedra

Question #243512

Find the domain and range of the following rational function. Use any notation. 1. f(x) = 2

π‘₯+1

2. f(x) = 3π‘₯ π‘₯+3

3. f(x) = 3βˆ’π‘₯ π‘₯βˆ’7

4. f(x) = 2+π‘₯ π‘₯

5. f(x) = (π‘₯+1) π‘₯2βˆ’1


1
Expert's answer
2021-09-29T07:24:35-0400

1. "f(x)=\\dfrac{2}{x+1}"

"x+1\\not=0=>x\\not=-1"


"Domain:(-\\infin, -1)\\cup (-1, \\infin)"

"Range:(-\\infin, 0)\\cup (0, \\infin)"

2. "f(x)=\\dfrac{3x}{x+3}"

"x+3\\not=0=>x\\not=-3"


"f(x)=\\dfrac{3x}{x+3}=\\dfrac{3x+9-9}{x+3}=3-\\dfrac{9}{x+3}"


"Domain:(-\\infin, -3)\\cup (-3, \\infin)"

"Range:(-\\infin, 3)\\cup (3, \\infin)"


3. "f(x)=\\dfrac{3-x}{x-7}"

"x-7\\not=0=>x\\not=7"


"f(x)=\\dfrac{3-x}{x-7}=\\dfrac{3-(x-7)-7}{x-7}=-1-\\dfrac{4}{x-7}"


"Domain:(-\\infin, 7)\\cup (7, \\infin)"

"Range:(-\\infin, -1)\\cup (-1, \\infin)"


4. "f(x)=\\dfrac{2+x}{x}"

"x\\not=0"

"f(x)=\\dfrac{2+x}{x}=1+\\dfrac{2}{x}""Domain:(-\\infin, 0)\\cup (0, \\infin)"

"Range:(-\\infin, 1)\\cup (1, \\infin)"



5. "f(x)=\\dfrac{x+1}{x^2-1}"

"x^2-1\\not=0=>x\\not=-1, x\\not=1"


"f(x)=\\dfrac{x+1}{x^2-1}=\\dfrac{x+1}{(x+1)(x-1)}=-\\dfrac{1}{x-1}, x\\not=\\pm1"


"Domain:(-\\infin,-1)\\cup (-1,1)\\cup (1, \\infin)"

"Range:(-\\infin, 0)\\cup (0, \\infin)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS