Using the substitution u = 2x, solve the equation 23x = 2(2x+1) + 3(2x)
Given equation is: 23x = 2(2x+1) + 3(2x)
Substituting 2x=u in the equation, get:
23(u2)=2(u+1)+3(u)⇒23u2=5u+2⇒23u2−5u=2⇒13u2=2⇒u=41323(\frac{u}{2})=2(u+1)+3(u)\\ \Rightarrow \frac{23u}{2}=5u+2\\ \Rightarrow \frac{23u}{2}-5u=2\\ \Rightarrow \frac{13u}{2}=2\\ \Rightarrow u=\frac{4}{13}23(2u)=2(u+1)+3(u)⇒223u=5u+2⇒223u−5u=2⇒213u=2⇒u=134
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment