Question #240276

It is known that a quadratic function

f(x)=ax^2+bx+2 (a<0)

satisfies the relation f(10)=0. Find the largest possible quantity of integer solutions of the inequality ax^4+bx^2+2>0.


1
Expert's answer
2021-09-24T11:03:31-0400

f(x)=ax2+bx+2 (a<0)f(x) = a x\\^2 + bx + 2 \ (a<0). a is negative.a \ is \ negative. Therefore, the function can be written as: f(x)=ax2+bx+2f(x) = -a x\\^2 + bx + 2

f(10)=a(10)2+b(10)+2=0f(10) = -a(10)\\^2 + b(10) + 2= 0

100a+10b+2=0-100a + 10b + 2 = 0

10b=100a210 b= 100a - 2

b=10a210b= 10 a- \frac{2}{10}

ax4+bx2+2>0ax\\^4 + bx\\^2 + 2>0

ax4+(10a210)x2+2>0ax\\^4 + (10a - \frac{2}{10}) x\\^2 + 2 >0

f(10)=0f(10) = 0

a104+(10a210)102+2>0a10\\^4 + (10a - \frac{2}{10}) 10\\^2 + 2 >0

10000a+(10a210)100+2>010000a + (10a - \frac{2}{10}) 100 + 2 >0

10000a+1000a20+2>010000a + 1000a -20 + 2 >0

11000a>1811000a > 18

a>1811000a>\frac{18}{11000}

From the above the, largest possible quantity of integer is


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS