It is known that a quadratic function
f(x)=ax^2+bx+2 (a<0)
satisfies the relation f(10)=0. Find the largest possible quantity of integer solutions of the inequality ax^4+bx^2+2>0.
"f(x) = a x\\\\^2 + bx + 2 \\ (a<0)". "a \\ is \\ negative." Therefore, the function can be written as: "f(x) = -a x\\\\^2 + bx + 2"
"f(10) = -a(10)\\\\^2 + b(10) + 2= 0"
"-100a + 10b + 2 = 0"
"10 b= 100a - 2"
"b= 10 a- \\frac{2}{10}"
"ax\\\\^4 + bx\\\\^2 + 2>0"
"ax\\\\^4 + (10a - \\frac{2}{10}) x\\\\^2 + 2 >0"
"f(10) = 0"
"a10\\\\^4 + (10a - \\frac{2}{10}) 10\\\\^2 + 2 >0"
"10000a + (10a - \\frac{2}{10}) 100 + 2 >0"
"10000a + 1000a -20 + 2 >0"
"11000a > 18"
"a>\\frac{18}{11000}"
From the above the, largest possible quantity of integer is
Comments
Leave a comment