Equation X^3 + 21X^2 + p = 0$$ has three different real solutions that form an arithmetic progression. Find the largest value of parameter p.
Solution:
"x^3+21x^2+p=0"
It can be written as "(x-a)(x-b)(x-c)=0"
Here, roots are "a,b,c".
Then, "x^3+21x^2+p=(x-a)(x-b)(x-c)"
"\\Rightarrow x^3+21x^2+p=(x-a)(x^2-x(b+c)+bc)\n\\\\ \\Rightarrow x^3+21x^2+p=x^3-ax^2-x^2(b+c)+ax(b+c)+xbc-abc\n\\\\ \\Rightarrow x^3+21x^2+p=x^3+x^2(-a-b-c)+x(ab+ac+bc)-abc"
On comparing both sides,
"-a-b-c=21;\\ ab+ac+bc=0;-abc=p\n\\\\\\Rightarrow a+b+c=-21\\ ...(i);\\ ab+ac+bc=0;abc=-p"
It is given that the roots are in AP.
"a+c=2b\\ ...(ii)"
using (ii) in (i),
"3b=-21\n\\\\ \\Rightarrow b=-7"
Put this value in (ii),
"a+c=-14"
Also, "abc=-p"
"\\Rightarrow ac(-7)=-p" [Using b=-7]
"\\Rightarrow ac=\\dfrac p7"
Also, "ab+ac+bc=0"
"\\Rightarrow -7a+ac-7c=0" [Using b=-7]
"\\Rightarrow 7(a+c)=ac\n\\\\\\Rightarrow 7(-14)=\\dfrac p7\n\\\\ \\Rightarrow p=-686"
Comments
Leave a comment