Find the fourth term in the expansion x^2 -2y^1/2
"(x^2-2y)^{\\frac{1}{2}}=[x^2(1-\\frac{2y}{x^2})]^{\\frac{1}{2}}\n\\\\=x(1-\\frac{2y}{x^2})^{\\frac{1}{2}}\n\\\\\\text{Using binomial expansion, we expand the expression above}\n\\\\=x[1-\\frac{1}{2}.\\frac{2y}{x^2} + \\frac{\\frac{1}{2}(\\frac{1}{2}-1).(\\frac{2y}{x^2})^2}{2!}+ \\frac{\\frac{1}{2}.(\\frac{1}{2}-1).(\\frac{1}{2}-2).(\\frac{2y}{x^2})^2}{3!}]\n\\\\=x[1-\\frac{y}{x^2}-\\frac{y^2}{2x^4}-\\frac{y^3}{3x^6}]\n\\\\= x-\\frac{y}{x}-\\frac{y^2}{2x^3}-\\frac{y^3}{3x^5}+..."
Comments
Leave a comment