expand by using binomial theorem: (x^2/2-2/x)^4
"\\left( \\cfrac {x^2} 2 - \\cfrac 2 x \\right) ^{ \\large 4} = \\left( \\cfrac {x^2} 2 \\right)^{ \\large 4} \n- \\large{4} \\left(\\cfrac {x^2} 2 \\right)^{ \\large 3}\\cfrac 2 x \n+ \\large{6} \\left( \\cfrac {x^2} 2 \\right)^{ \\large 2}\\left( \\cfrac 2 x \\right)^{ \\large 2}\n- \\large{4}\\left( \\cfrac {x^2} 2 \\right) \\left( \\cfrac 2 x \\right)^{ \\large 3} +\\\\\n +\\left( \\cfrac 2 x \\right)^{ \\large 4} = \\cfrac {x^8} {16} \n- \\large{4} \\left(\\cfrac {x^6} 8 \\right) \\cfrac 2 x \n+ \\large{6} \\left( \\cfrac {x^4} 4 \\right)\\left( \\cfrac 4 {x^2} \\right)\n- \\large{4}\\left( \\cfrac {x^2} 2 \\right) \\left( \\cfrac 8 {x^3} \\right) \n + \\cfrac {16} {x^4} = \\\\\n= \\cfrac {x^8} {16} - x^5 + \\large{6} x^2 - \\cfrac {16} x + \\cfrac {16} {x^4}"
Comments
Leave a comment