Question #225880

expand by using binomial theorem: (x^2/2-2/x)^4


1
Expert's answer
2021-08-16T11:15:26-0400

(x222x)4=(x22)44(x22)32x+6(x22)2(2x)24(x22)(2x)3++(2x)4=x8164(x68)2x+6(x44)(4x2)4(x22)(8x3)+16x4==x816x5+6x216x+16x4\left( \cfrac {x^2} 2 - \cfrac 2 x \right) ^{ \large 4} = \left( \cfrac {x^2} 2 \right)^{ \large 4} - \large{4} \left(\cfrac {x^2} 2 \right)^{ \large 3}\cfrac 2 x + \large{6} \left( \cfrac {x^2} 2 \right)^{ \large 2}\left( \cfrac 2 x \right)^{ \large 2} - \large{4}\left( \cfrac {x^2} 2 \right) \left( \cfrac 2 x \right)^{ \large 3} +\\ +\left( \cfrac 2 x \right)^{ \large 4} = \cfrac {x^8} {16} - \large{4} \left(\cfrac {x^6} 8 \right) \cfrac 2 x + \large{6} \left( \cfrac {x^4} 4 \right)\left( \cfrac 4 {x^2} \right) - \large{4}\left( \cfrac {x^2} 2 \right) \left( \cfrac 8 {x^3} \right) + \cfrac {16} {x^4} = \\ = \cfrac {x^8} {16} - x^5 + \large{6} x^2 - \cfrac {16} x + \cfrac {16} {x^4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS