Answer to Question #225493 in Algebra for Arun kumar

Question #225493

Find all x ∈ R that solve this equation: 123 = x


1
Expert's answer
2021-08-12T17:54:40-0400
123=x(2x(3x3)2)+100+20+3123 = x (2x (3x − 3) − 2) + 100 + 20 + 3

x(2x(3x3)2)=0x (2x (3x − 3) − 2)=0

2x(3x23x1)=02x(3x^2-3x-1)=0

x=0 or 3x23x1=0x=0\ or\ 3x^2-3x-1=0

x=3±(3)24(3)(1)2(3)=3±216x=\dfrac{3\pm\sqrt{(-3)^2-4(3)(-1)}}{2(3)}=\dfrac{3\pm\sqrt{21}}{6}

x{0,3216,3+216}x\in \{0, \dfrac{3-\sqrt{21}}{6}, \dfrac{3+\sqrt{21}}{6}\}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment