Question #222481

Solve the simultaneous equations


2x^2 = 4y and logxy = 3/2 


1
Expert's answer
2021-08-02T16:41:11-0400

Explanations & Calculations


2x2=4y2x2=(22)y=22yBy equaling the indeces we getx2=2y(1)logxy=32y=x32(2)By (1)=(2),x2=2x32x22x32=0x32(x122)=0x32=0orx122=0x=0orx=22=4accordingly the y values by (2),y=0ory=8(x,y)=(0,0)or(4,8)\qquad\qquad \begin{aligned} \small 2^{x^2}&=\small 4^y\\ \small 2^{x^2}&=\small (2^2)^y= 2^{2y}\\\\ \text{By equaling the indeces we get}\\\\ \small x^2&=\small 2y\cdots\cdots\cdots\cdots(1)\\\\ \small log_x\,y&=\small \frac{3}{2}\\ \small y&=\small x^{\frac{3}{2}}\cdots\cdots\cdots\cdots(2)\\\\ \small\text{By (1)=(2),}\\\\ \small x^2 &=\small 2x^{\frac{3}{2}}\\ \small x^2-2x^{\frac{3}{2}}&=\small 0\\ x^{\frac{3}{2}}(x^{\frac{1}{2}}-2)&=\small 0\\ \small x^{\frac{3}{2}} = 0\qquad &or\qquad x^{\frac{1}{2}}-2=0\\ \small x= 0\qquad &or\qquad x =2^2=4 \\\\ \small \text{accordingly the y values by (2),}\\\\ \small y = 0\qquad & or \qquad y= 8\\\\ \small \therefore (x,y) = (0,0)\qquad &or\qquad (4,8) \end{aligned}


  • All x & y values satisfy the above (1) & (2) equations hence form the results.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS