[(4x2−3x−1)21]≥2x−3
(4x2−3x−1)≥2x−3
Determine the defined range
4x2−3x−1≥2x−3,x∈[∞,−41]∪[1,+∞]
Separate the inequality into 2 possible cases
(4x2−3x−1)≥2x−3, 2x−3≥0
(4x2−3x−1)≥2x−3, 2x−3<0
Solve the inequality for x
x≥910,2x−3≥0
(4x2−3x−1)≥2x−3,2x−3<0
x≥910,x≥23
(4x2−3x−1)≥2x−3,2x−3<0
Since the left hand side is always positive or zero, and the right hand side is always negative, the statement is true for any value of x
x≥910,x≥23
x∈R,2x−3<0
x∈R,x<23
Find the intersection
x∈[23,+∞]
x∈R,x<23
x∈[−∞,23]
Find the union
x∈R,x∈[−∞,−41]∪[1,+∞]
Find the intersection of the defined solution and the defined range
x∈[−∞,−41]∪[1,+∞]
Comments