Solutions of the inequality [(4x2-3x-1)^1/2]>= 2x-3 are?
"[(4x^2-3x-1)^{\\frac{1}{2}}] \u2265 2x-3"
"\\sqrt{(4x^2-3x-1)} \u2265 2x-3"
Determine the defined range
"\\sqrt{4x^2-3x-1} \u2265 2x-3\n\n,x\\in[ \u221e,-\\frac{1}{4}]\n \u222a\n[1,+\u221e]"
Separate the inequality into 2 possible cases
"\\sqrt{(4x^2-3x-1)} \u2265 2x-3 ," "2x-3 \n \u2265 0"
"\\sqrt{(4x^2-3x-1)} \u2265 2x-3 ," "2x-3 \n <0"
Solve the inequality for x
"x\u2265\\frac{10}{9},2x-3\n\u22650"
"\\sqrt{(4x^2-3x-1)} \u2265 2x-3 , 2x-3<0"
"x\u2265\\frac{10}{9},\nx\u2265\\frac{3}{2}"
"\\sqrt{(4x^2-3x-1)} \u2265 2x-3 , 2x-3<0"
Since the left hand side is always positive or zero, and the right hand side is always negative, the statement is true for any value of x
"x\u2265\\frac{10}{9},\nx\u2265\\frac{3}{2}"
"x\\in \\reals, 2x-3<0"
"x\\in \\reals, x<\\frac{3}{2}"
Find the intersection
"x\\in [\\frac{3}{2},+\u221e]"
"x\\in \\reals, x<\\frac{3}{2}"
"x\\in [-\u221e,\\frac{3}{2}]"
Find the union
"x\\in \\reals\n, x\\in[ -\u221e,-\\frac{1}{4}]\n \u222a\n\n[1,+\u221e]"
Find the intersection of the defined solution and the defined range
"x\\in[ -\u221e,-\\frac{1}{4}]\n\u222a\n\n[1,+\u221e]"
Comments
Leave a comment