Question #217333

Solutions of the inequality [(4x2-3x-1)^1/2]>= 2x-3 are?


1
Expert's answer
2021-09-07T00:53:44-0400

[(4x23x1)12]2x3[(4x^2-3x-1)^{\frac{1}{2}}] ≥ 2x-3


(4x23x1)2x3\sqrt{(4x^2-3x-1)} ≥ 2x-3


Determine the defined range


 4x23x12x3,x[,14][1,+]\sqrt{4x^2-3x-1} ≥ 2x-3 ,x\in[ ∞,-\frac{1}{4}] ∪ [1,+∞]


Separate the inequality into 2 possible cases


(4x23x1)2x3,\sqrt{(4x^2-3x-1)} ≥ 2x-3 , 2x302x-3 ≥ 0


(4x23x1)2x3,\sqrt{(4x^2-3x-1)} ≥ 2x-3 , 2x3<02x-3 <0


Solve the inequality for x


x109,2x30x≥\frac{10}{9},2x-3 ≥0


(4x23x1)2x3,2x3<0\sqrt{(4x^2-3x-1)} ≥ 2x-3 , 2x-3<0


x109,x32x≥\frac{10}{9}, x≥\frac{3}{2}


(4x23x1)2x3,2x3<0\sqrt{(4x^2-3x-1)} ≥ 2x-3 , 2x-3<0


Since the left hand side is always positive or zero, and the right hand side is always negative, the statement is true for any value of x


x109,x32x≥\frac{10}{9}, x≥\frac{3}{2}


xR,2x3<0x\in \reals, 2x-3<0


xR,x<32x\in \reals, x<\frac{3}{2}


Find the intersection

x[32,+]x\in [\frac{3}{2},+∞]


xR,x<32x\in \reals, x<\frac{3}{2}


x[,32]x\in [-∞,\frac{3}{2}]


Find the union

xR,x[,14][1,+]x\in \reals , x\in[ -∞,-\frac{1}{4}] ∪ [1,+∞]


Find the intersection of the defined solution and the defined range


x[,14][1,+]x\in[ -∞,-\frac{1}{4}] ∪ [1,+∞]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS