A. Expand each power using Properties I to V.
1.) (c+d)^5
2.) (x-y)^4
3.) (3-x)^4
4.) (u-v)^8
5.) (3b+y)^5
B. Find only the first three terms in the expansion.
1.) (a+20)^14
2.) (c+y)^k
C. Compute each factorial expression.
1.) 6!
2.) 8!
3.) 3!4!
Solution.
"A. \\newline\n1. \\newline\n\\left(c + d\\right)^{5}=\\newline=c^{5} + 5 c^{4} d + 10 c^{3} d^{2} + 10 c^{2} d^{3} + 5 c d^{4} + d^{5}.\n\\newline 2. \\newline\n\\left(x - y\\right)^{4}=\\newline=x^{4} - 4 x^{3} y + 6 x^{2} y^{2} - 4 x y^{3} + y^{4}.\n\\newline 3. \\newline\n\\left(3 - x\\right)^{4}=\\newline=x^{4} - 12 x^{3} + 54 x^{2} - 108 x + 81.\n\\newline 4. \\newline\n\\left(u - v\\right)^{8}=\\newline=u^{8} - 8 u^{7} v + 28 u^{6} v^{2} - 56 u^{5} v^{3} + \\newline+ 70 u^{4} v^{4} - 56 u^{3} v^{5} + 28 u^{2} v^{6} - 8 u v^{7} + v^{8}.\n\\newline 5. \\newline\n\\left(3 b + y\\right)^{5}=\\newline=243 b^{5} + 405 b^{4} y + 270 b^{3} y^{2} + 90 b^{2} y^{3} + 15 b y^{4} + y^{5}.\n\\newline B. \\newline\n(k+1) \\space term \\space of \\space binomial \\space expansion \\space is: \\newline\nt_{k+1}=n C_k*(x)^{n-k}*(y)^{k}; \\newline\n1) \\newline\nIn \\space expansion \\space (a+20)^{14} \\space \\newline the \\space first \\space three \\space terms \\space are: \\newline\nt_1=a^{14}; \\newline\nt_2=280*a^{13}; \\newline\nt_3=36400*a^{12}. \\newline\n2) \\newline\nIn \\space expansion \\space (c+y)^k \\space the \\space first \\space three \\space terms \\space are: \\newline\nt_{1}=k C_0*c^{k}*y^{0}=k C_0*c^{k}; \\newline\nt_{2}=k C_1*c^{k-1}*y^{1}=k C_1*c^{k-1}*y; \\newline\nt_{3}=k C_2*c^{k-2}*y^{2}. \\newline\nC. \\newline\n1)\\space 6!=1*2*3*4*5*6 =720.\n\\newline 2)\\space 8!=1*2*3*4*5*6*7*8=40320.\n\\newline 3)\\space 3!4!=1*2*3*1*2*3*4=6*24=144."
Comments
Leave a comment