Answer to Question #216767 in Algebra for Ann

Question #216767

A. Expand each power using Properties I to V.

1.) (c+d)^5

2.) (x-y)^4

3.) (3-x)^4

4.) (u-v)^8

5.) (3b+y)^5


B. Find only the first three terms in the expansion.

1.) (a+20)^14

2.) (c+y)^k


C. Compute each factorial expression.

1.) 6!

2.) 8!

3.) 3!4!


1
Expert's answer
2021-07-14T08:23:49-0400

Solution.

A.1.(c+d)5==c5+5c4d+10c3d2+10c2d3+5cd4+d5.2.(xy)4==x44x3y+6x2y24xy3+y4.3.(3x)4==x412x3+54x2108x+81.4.(uv)8==u88u7v+28u6v256u5v3++70u4v456u3v5+28u2v68uv7+v8.5.(3b+y)5==243b5+405b4y+270b3y2+90b2y3+15by4+y5.B.(k+1) term of binomial expansion is:tk+1=nCk(x)nk(y)k;1)In expansion (a+20)14 the first three terms are:t1=a14;t2=280a13;t3=36400a12.2)In expansion (c+y)k the first three terms are:t1=kC0cky0=kC0ck;t2=kC1ck1y1=kC1ck1y;t3=kC2ck2y2.C.1) 6!=123456=720.2) 8!=12345678=40320.3) 3!4!=1231234=624=144.A. \newline 1. \newline \left(c + d\right)^{5}=\newline=c^{5} + 5 c^{4} d + 10 c^{3} d^{2} + 10 c^{2} d^{3} + 5 c d^{4} + d^{5}. \newline 2. \newline \left(x - y\right)^{4}=\newline=x^{4} - 4 x^{3} y + 6 x^{2} y^{2} - 4 x y^{3} + y^{4}. \newline 3. \newline \left(3 - x\right)^{4}=\newline=x^{4} - 12 x^{3} + 54 x^{2} - 108 x + 81. \newline 4. \newline \left(u - v\right)^{8}=\newline=u^{8} - 8 u^{7} v + 28 u^{6} v^{2} - 56 u^{5} v^{3} + \newline+ 70 u^{4} v^{4} - 56 u^{3} v^{5} + 28 u^{2} v^{6} - 8 u v^{7} + v^{8}. \newline 5. \newline \left(3 b + y\right)^{5}=\newline=243 b^{5} + 405 b^{4} y + 270 b^{3} y^{2} + 90 b^{2} y^{3} + 15 b y^{4} + y^{5}. \newline B. \newline (k+1) \space term \space of \space binomial \space expansion \space is: \newline t_{k+1}=n C_k*(x)^{n-k}*(y)^{k}; \newline 1) \newline In \space expansion \space (a+20)^{14} \space \newline the \space first \space three \space terms \space are: \newline t_1=a^{14}; \newline t_2=280*a^{13}; \newline t_3=36400*a^{12}. \newline 2) \newline In \space expansion \space (c+y)^k \space the \space first \space three \space terms \space are: \newline t_{1}=k C_0*c^{k}*y^{0}=k C_0*c^{k}; \newline t_{2}=k C_1*c^{k-1}*y^{1}=k C_1*c^{k-1}*y; \newline t_{3}=k C_2*c^{k-2}*y^{2}. \newline C. \newline 1)\space 6!=1*2*3*4*5*6 =720. \newline 2)\space 8!=1*2*3*4*5*6*7*8=40320. \newline 3)\space 3!4!=1*2*3*1*2*3*4=6*24=144.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment