First of all let us know what is (a+b)3
(a+b)3=(a+b)(a+b)(a+b)
=(a+b)(a+b)(a+b)
=a(a+b)+b(a+b)(a+b)
=(a2+ab+ab+b2)(a+b)
=(a2+b2+2ab)(a+b)
=a2(a+b)+b2(a+b)+2ab(a+b)
=a3+a2b+ab2+b3+2a2b+2ab2
=a3+b3+3a2b+3ab2
=a3+b3+3ab(a+b)
Now when we have expanded (a+b)3=a3+b3+3ab(a+b)
We can equate it
(a+b)3=a3+b3+3ab(a+b)
(a+b)3−3ab(a+b)=a3+b3
∴a3+b3=(a+b)3−3ab(a+b)
The following is the relation between (a+b)2 and (a−b)
(a+b)2=(a−b)+a(a−1)+b(2a+b+1)
The solution of (a+b)2 in form (a−b)
(a+b)2=(a+b)(a+b)
=a(a+b)+b(a+b)
=a2+ab+ab+b2+a−a+b−b
Rearranging gives
(a+b)2=(a−b)+a2−a+2ab+b2+b
Factor common terms
∴(a+b)2=(a−b)+a(a−1)+b(2a+b+1)
Comments
Excellent solutions sir