Derive the value of a3+b3 from ( a+b)3 and what is the relation between (a+b)2 and( a-b) means find the solution of (a+b)2 in form( a-b)
First of all let us know what is "(a+b)^3"
"(a+b)^3= (a+b) (a+b) (a+b)"
"={(a+b) (a+b)} (a+b)"
"={a(a+b) + b(a+b)} (a+b)"
"=(a^2 + ab + ab + b^2) (a+b)"
"=(a^2 + b^2 + 2ab) (a+b)"
"=a^2(a+b) + b^2(a+b) + 2ab(a+b)"
"=a^3 + a^2b + ab^2 + b^3 + 2a^2b + 2ab^2"
"=a^3 + b^3 + 3a^2b + 3ab^2"
"=a^3 + b^3 + 3ab(a+b)"
Now when we have expanded "(a+b)^3 = a^3 + b^3 + 3ab(a+b)"
We can equate it
"(a+b)^3 = a^3 + b^3 + 3ab(a+b)"
"(a+b)^3 - 3ab(a+b) = a^3 + b^3"
"\\therefore a^3 + b^3 = (a+b)^3 - 3ab(a+b)"
The following is the relation between "(a+b)^2" and "( a-b)"
"(a+b)^2=(a-b)+a(a-1)+b(2a+b+1)"
The solution of "(a+b)2" in form "( a-b)"
"(a+b)^2=(a+b)(a+b)"
"=a(a+b)+b(a+b)"
"=a^2+ab+ab+b^2+a-a+b-b"
Rearranging gives
"(a+b)^2=(a-b)+a^2-a+2ab+b^2+b"
Factor common terms
"\\therefore (a+b)^2=(a-b)+a(a-1)+b(2a+b+1)"
Comments
Excellent solutions sir
Leave a comment