Question #216243

Derive the value of a3+b3 from ( a+b)3 and what is the relation between (a+b)2 and( a-b) means find the solution of (a+b)2 in form( a-b)


1
Expert's answer
2021-07-12T16:42:16-0400

First of all let us know what is (a+b)3(a+b)^3


(a+b)3=(a+b)(a+b)(a+b)(a+b)^3= (a+b) (a+b) (a+b)


=(a+b)(a+b)(a+b)={(a+b) (a+b)} (a+b)

=a(a+b)+b(a+b)(a+b)={a(a+b) + b(a+b)} (a+b)


=(a2+ab+ab+b2)(a+b)=(a^2 + ab + ab + b^2) (a+b)


=(a2+b2+2ab)(a+b)=(a^2 + b^2 + 2ab) (a+b)


=a2(a+b)+b2(a+b)+2ab(a+b)=a^2(a+b) + b^2(a+b) + 2ab(a+b)


=a3+a2b+ab2+b3+2a2b+2ab2=a^3 + a^2b + ab^2 + b^3 + 2a^2b + 2ab^2


=a3+b3+3a2b+3ab2=a^3 + b^3 + 3a^2b + 3ab^2


=a3+b3+3ab(a+b)=a^3 + b^3 + 3ab(a+b)


Now when we have expanded  (a+b)3=a3+b3+3ab(a+b)(a+b)^3 = a^3 + b^3 + 3ab(a+b)


We can equate it


(a+b)3=a3+b3+3ab(a+b)(a+b)^3 = a^3 + b^3 + 3ab(a+b)


(a+b)33ab(a+b)=a3+b3(a+b)^3 - 3ab(a+b) = a^3 + b^3


a3+b3=(a+b)33ab(a+b)\therefore a^3 + b^3 = (a+b)^3 - 3ab(a+b)


The following is the relation between (a+b)2(a+b)^2 and (ab)( a-b)


(a+b)2=(ab)+a(a1)+b(2a+b+1)(a+b)^2=(a-b)+a(a-1)+b(2a+b+1)


 The solution of (a+b)2(a+b)2 in form (ab)( a-b)


(a+b)2=(a+b)(a+b)(a+b)^2=(a+b)(a+b)


=a(a+b)+b(a+b)=a(a+b)+b(a+b)


=a2+ab+ab+b2+aa+bb=a^2+ab+ab+b^2+a-a+b-b


Rearranging gives


(a+b)2=(ab)+a2a+2ab+b2+b(a+b)^2=(a-b)+a^2-a+2ab+b^2+b


Factor common terms

(a+b)2=(ab)+a(a1)+b(2a+b+1)\therefore (a+b)^2=(a-b)+a(a-1)+b(2a+b+1)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Jagan Kumar panda
13.07.21, 08:06

Excellent solutions sir

LATEST TUTORIALS
APPROVED BY CLIENTS